Achieving Simultaneous Nitrification and Denitrification by a Membrane Aerated Biofilm Reactor at Moderate Lumen Pressure
Abstract
:1. Introduction
2. Materials and Methods
2.1. MABR System Set-Up and Operation
2.1.1. MABR System Set-Up
2.1.2. Experimental Operation
2.2. Chemical Analysis
2.3. Biofilm Analysis
2.4. The Extraction and Analysis of Extracellular Polymeric Substances (EPS)
2.5. DNA Extraction and 16s rRNA Gene Sequencing Analysis
3. Results and Discussion
3.1. Water Quality
3.1.1. Batch Tests
3.1.2. Long-Term Continuous Feeding Tests
3.2. Biofilm Characteristics
3.2.1. Biomass Density and the Thickness of Biofilm
3.2.2. The Content and Composition of EPS
3.2.3. Biofilm Visualization
3.3. Microbial Diversity and Community Structure
3.3.1. Microbial Diversity
3.3.2. Microbial Community Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Priya, A.K.; Pachaiappan, R.; Kumar, P.S.; Jalil, A.A.; Vo, D.-V.N.; Rajendran, S. The war using microbes: A sustainable approach for wastewater management. Environ. Pollut. 2021, 275, 116598. [Google Scholar] [CrossRef]
- Anh-Vu, N.; Yun-Je, L.; Masumi, K.; Visvanathan, C. Effects of membrane relaxation rate on performance of pilot-scale membrane aerated biofilm reactors treating domestic wastewater. Environ. Res. 2022, 211, 113003. [Google Scholar] [CrossRef]
- Li, J.; Feng, M.; Zheng, S.; Zhao, W.; Xu, X.; Yu, X. The membrane aerated biofilm reactor for nitrogen removal of wastewater treatment: Principles, performances, and nitrous oxide emissions. Chem. Eng. J. 2023, 460, 141693. [Google Scholar] [CrossRef]
- Kabuba, J.; Lephallo, J.; Rutto, H. Comparison of various technologies used to eliminate nitrogen from wastewater: A review. J. Water Process Eng. 2022, 48, 102885. [Google Scholar] [CrossRef]
- Alsalhy, Q.F.; Al-Ani, F.H.; Al-Najar, A.E. A new Sponge-GAC-Sponge membrane module for submerged membrane bioreactor use in hospital wastewater treatment. Biochem. Eng. J. 2018, 133, 130–139. [Google Scholar] [CrossRef]
- Wang, X.J.; Xia, S.Q.; Chen, L.; Zhao, J.F.; Renault, N.J.; Chovelon, J.M. Nutrients removal from municipal wastewater by chemical precipitation in a moving bed biofilm reactor. Process Biochem. 2006, 41, 824–828. [Google Scholar] [CrossRef]
- He, H.; Wagner, B.; Carlson, A.; Yang, C.; Daigger, G. Recent progress using membrane aerated biofilm reactors for wastewater treatment. Water Sci. Technol. 2021, 84, 2131–2157. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Zhao, Y.-G.; Maqbool, F.; Gao, M.; Guo, L.; Ji, J.; Zhao, X.; Zhang, M. Sulfamethoxazole removal from mariculture wastewater in moving bed biofilm reactor and insight into the changes of antibiotic and resistance genes. Chemosphere 2022, 298, 134327. [Google Scholar] [CrossRef]
- Xia, Z.; Ng, H.Y.; Xu, D.; Bae, S. Lumen air pressure regulated multifunctional microbiotas in membrane-aerated biofilm reactors for simultaneous nitrogen removal and antibiotic elimination from aquaculture wastewater. Water Res. 2024, 251, 121102. [Google Scholar] [CrossRef]
- Chang, M.; Liang, B.; Zhang, K.; Wang, Y.; Jin, D.; Zhang, Q.; Hao, L.; Zhu, T. Simultaneous shortcut nitrification and denitrification in a hybrid membrane aerated biofilms reactor (H-MBfR) for nitrogen removal from low COD/N wastewater. Water Res. 2022, 211, 118027. [Google Scholar] [CrossRef]
- Martin, K.J.; Picioreanu, C.; Nerenberg, R. Multidimensional modeling of biofilm development and fluid dynamics in a hydrogen-based, membrane biofilm reactor (MBfR). Water Res. 2013, 47, 4739–4751. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.J.; Nerenberg, R. The membrane biofilm reactor (MBfR) for water and wastewater treatment: Principles, applications, and recent developments. Bioresour. Technol. 2012, 122, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Nerenberg, R. The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process. Curr. Opin. Biotechnol. 2016, 38, 131–136. [Google Scholar] [CrossRef]
- Zheng, P.; Li, Y.; Chi, Q.; Cheng, Y.; Jiang, X.; Chen, D.; Mu, Y.; Shen, J. Structural characteristics and microbial function of biofilm in membrane-aerated biofilm reactor for the biodegradation of volatile pyridine. J. Hazard. Mater. 2022, 437, 129370. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Daigger, G.T. The hybrid MABR process achieves intensified nitrogen removal while N2O emissions remain low. Water Res. 2023, 244, 120458. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Li, B.; Zhao, S.; Qiang, C.C.; Zhang, H.; Wang, S.-C. COD and nitrogen removal in facilitated transfer membrane-aerated biofilm reactor (FT-MABR). J. Membr. Sci. 2012, 389, 257–264. [Google Scholar] [CrossRef]
- Chen, R.; Cao, S.; Zhang, L.; Zhou, Y. NOB suppression strategies in a mainstream membrane aerated biofilm reactor under exceptionally low lumen pressure. Chemosphere 2022, 290, 133386. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, R.; Guo, B.; Yu, N.; Xia, S.; Liu, Y. Lumen air pressure (LAP) affecting greywater treatment in an oxygen-based membrane biofilm reactor (O2-MBfR). Chemosphere 2021, 270, 129541. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, R.; Guo, B.; Zhang, L.; Zou, X.; Xia, S.; Liu, Y. Greywater treatment using an oxygen-based membrane biofilm reactor: Formation of dynamic multifunctional biofilm for organics and nitrogen removal. Chem. Eng. J. 2020, 386, 123989. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Wang, Y. Integrating membrane aerated biofilm reactors with biological nitrogen removal processes: A new paradigm for achieving sustainable wastewater treatment plants. Chem. Eng. J. 2023, 475, 146025. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Celmer, D.; Oleszkiewicz, J.A.; Cicek, N. Impact of shear force on the biofilm structure and performance of a membrane biofilm reactor for tertiary hydrogen-driven denitrification of municipal wastewater. Water Res. 2008, 42, 3057–3065. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-Y.; Dong, Q.-Y.; Chen, J.-X.; Zhu, Q.-S.; Yang, X.; Chen, W.-D.; Zhao, H.-P.; Zhu, L. Role of Extracellular Polymeric Substances in a Methane Based Membrane Biofilm Reactor Reducing Vanadate. Environ. Sci. Technol. 2018, 52, 10680–10688. [Google Scholar] [CrossRef] [PubMed]
- Herbert, D.; Phipps, P.J.; Strange, R.E. Chapter III Chemical Analysis of Microbial Cells. In Methods Microbiology; Norris, J.R., Ribbons, D.W., Eds.; Academic Press: Cambridge, MA, USA, 1971; pp. 209–344. [Google Scholar]
- Pierce, J.; Suelter, C.H. An evaluation of the Coomassie brilliant blue G-250 dye-binding method for quantitative protein determination. Anal. Biochem. 1977, 81, 478–480. [Google Scholar] [CrossRef] [PubMed]
- Rajakaruna, H.; Drake, D.A.R.; Chan, F.T.; Bailey, S.A. Optimizing performance of nonparametric species richness estimators under constrained sampling. Ecol. Evol. 2016, 6, 7311–7322. [Google Scholar] [CrossRef] [PubMed]
- Zaman, M.; Kim, M.; Nakhla, G. Simultaneous partial nitrification and denitrifying phosphorus removal (PNDPR) in a sequencing batch reactor process operated at low DO and high SRT for carbon and energy reduction. Chem. Eng. J. 2021, 425, 131881. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Kang, X.; Liu, Y.; Qiu, Y.; Wanyan, D.; Liu, J.; Cheng, G.; Huang, X. Establishing mainstream partial nitrification in the membrane aerated biofilm reactor by limiting the oxygen concentration in the biofilm. Water Res. 2024, 261, 121984. [Google Scholar] [CrossRef] [PubMed]
- Pellicer-Nacher, C.; Sun, S.; Lackner, S.; Terada, A.; Schreiber, F.; Zhou, Q.; Smets, B.F. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration. Environ. Sci. Technol. 2010, 44, 7628–7634. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Liu, J.; Li, T.; Cao, X.; Li, B. Performance and mechanism of the synergistic hexavalent chromium and nitrogen removal in a MABR system. Chem. Eng. J. 2023, 478, 147433. [Google Scholar] [CrossRef]
- Perez-Calleja, P.; Aybar, M.; Picioreanu, C.; Esteban-Garcia, A.L.; Martin, K.J.; Nerenberg, R. Periodic venting of MABR lumen allows high removal rates and high gas-transfer efficiencies. Water Res. 2017, 121, 349–360. [Google Scholar] [CrossRef]
- Song, W.; Kim, C.; Lee, J.; Han, J.; Jiang, Z.; Kim, J.; An, S.; Park, Y.; Kweon, J. Low-biofouling membrane bioreactor: Effects of cis-2-Decenoic acid addition on EPS and biofouling mitigation. Chemosphere 2024, 358, 142110. [Google Scholar] [CrossRef]
- Zhong, H.; Dong, L.; Tang, Y.; Qi, L.; Wang, M. The C/N Ratio’s Effect on a Membrane-Aerated Biofilm Reactor (MABR): COD and Nitrogen Removal, Biofilm Characteristics, and Microbial Community Structure. Water 2023, 15, 4298. [Google Scholar] [CrossRef]
- Li, T.; Liu, J. Rapid formation of biofilm grown on gas-permeable membrane induced by famine incubation. Biochem. Eng. J. 2017, 121, 156–162. [Google Scholar] [CrossRef]
- Rene, E.R.; Kim, S.J.; Park, H.S. Effect of COD/N ratio and salinity on the performance of sequencing batch reactors. Bioresour. Technol. 2008, 99, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Zhang, M.; Liu, Z.; Shang, H.; Li, Q.; Zhou, W. Dynamic characteristics of microbial community and soluble microbial products in partial nitrification biofilm system developed from marine sediments treating high salinity wastewater. J. Environ. Manag. 2021, 290, 112586. [Google Scholar] [CrossRef] [PubMed]
- Pellicer-Nàcher, C.; Smets, B.F. Structure, composition, and strength of nitrifying membrane-aerated biofilms. Water Res. 2014, 57, 151–161. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Chen, L.; Zhang, S.; Chen, R.; Wang, H. Hydrodynamic shear force shaped the microbial community and function in the aerobic granular sequencing batch reactors for low carbon to nitrogen (C/N) municipal wastewater treatment. Bioresour. Technol. 2019, 271, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Huerta, C.; Medina, J.S.; Wang, C.; Fortunato, L.; Hong, P.-Y. Understanding the role of sorption and biodegradation in the removal of organic micropollutants by membrane aerated biofilm reactor (MABR) with different biofilm thickness. Water Res. 2023, 236, 119935. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, Y.; Ma, F.; Li, A.; Zhao, H.P.; Wang, A.; Yang, J. In-situ utilization of soluble microbial product (SMP) cooperated with enhancing SMP-dependent denitrification in aerobic-anoxic sequencing batch reactor. Sci. Total Environ. 2019, 693, 133558. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Li, W.; Yang, S.; Du, P. Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge. Chemosphere 2010, 81, 626–632. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, M.; Wang, Z.; She, Z.; Chang, Q.; Sun, C.; Zhang, J.; Ren, Y.; Yang, N. Effect of salinity on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor. Chemosphere 2013, 93, 2789–2795. [Google Scholar] [CrossRef]
- Mason, P.M.; Stuckey, D.C. Biofilms, bubbles and boundary layers—A new approach to understanding cellulolysis in anaerobic and ruminant digestion. Water Res. 2016, 104, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Guadie, A.; Xia, S.; Zhang, Z.; Zeleke, J.; Guo, W.; Ngo, H.H.; Hermanowicz, S.W. Effect of intermittent aeration cycle on nutrient removal and microbial community in a fluidized bed reactor-membrane bioreactor combo system. Bioresour. Technol. 2014, 156, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Hao, R.; Li, S.; Li, J.; Meng, C. Denitrification of simulated municipal wastewater treatment plant effluent using a three-dimensional biofilm-electrode reactor: Operating performance and bacterial community. Bioresour. Technol. 2013, 143, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, C.; Di, H.; Cameron, K.; Podolyan, A.; Shen, J.; Zhang, L.; Sirisena, K.; Godsoe, W. Contrasting response of comammox Nitrospira, ammonia oxidising bacteria, and archaea to soil pH and nitrogen inputs. Sci. Total Environ. 2024, 924, 171627. [Google Scholar] [CrossRef]
Sample No. | Lumen Pressure (kPa) | Sequences Number | OTUs | Shannon | Simpson | Chao1 | ACE | Coverage |
---|---|---|---|---|---|---|---|---|
P-1 | 7 | 39,828 | 677 | 4.69 | 0.029 | 732.08 | 736.15 | 0.998 |
P-2 | 10 | 33,701 | 656 | 4.59 | 0.027 | 745.79 | 742.91 | 0.997 |
P-3 | 13 | 48,391 | 720 | 4.86 | 0.019 | 763.89 | 763.77 | 0.998 |
P-4 | 16 | 34,641 | 719 | 5.02 | 0.016 | 775.67 | 765.67 | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, H.; Tang, Y.; Wang, M.; Dong, L. Achieving Simultaneous Nitrification and Denitrification by a Membrane Aerated Biofilm Reactor at Moderate Lumen Pressure. Separations 2024, 11, 227. https://doi.org/10.3390/separations11080227
Zhong H, Tang Y, Wang M, Dong L. Achieving Simultaneous Nitrification and Denitrification by a Membrane Aerated Biofilm Reactor at Moderate Lumen Pressure. Separations. 2024; 11(8):227. https://doi.org/10.3390/separations11080227
Chicago/Turabian StyleZhong, Huiyun, Yuanyuan Tang, Mengyu Wang, and Liangfei Dong. 2024. "Achieving Simultaneous Nitrification and Denitrification by a Membrane Aerated Biofilm Reactor at Moderate Lumen Pressure" Separations 11, no. 8: 227. https://doi.org/10.3390/separations11080227
APA StyleZhong, H., Tang, Y., Wang, M., & Dong, L. (2024). Achieving Simultaneous Nitrification and Denitrification by a Membrane Aerated Biofilm Reactor at Moderate Lumen Pressure. Separations, 11(8), 227. https://doi.org/10.3390/separations11080227