Separation and Characterization of Nickel Hydroxide from Waste Solution Using Ca(OH)2 Precipitation in Chloride Media
Abstract
:1. Introduction
2. Materials and Method
2.1. Reagents and Material
2.2. Determination of Ferric (Fe3+) and Ferrous (Fe2+) Ions
2.3. Synthesis/Preparation Process of Ni(OH)2
2.4. The Effect of Precipitation
2.5. Characterization
3. Results and Discussion
3.1. The Elemental Composition of Waste Pregnant Leach
3.2. The Effect of Pre-Loading of Copper Concentration
3.3. The Effect of Precipitating Agent on Decreasing Ni2+ Ion Concentration
3.4. Structure–Morphology Characterization of Ni(OH)2 Precipitates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Odegbemi, F.; Idowu, G.A.; Adebayo, A.O. Nickel recovery from spent nickel-metal hydride batteries using LIX-84I-impregnated activated charcoal. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100452. [Google Scholar] [CrossRef]
- Watanabe, K.; Kikuoka, T.; Kumagai, N. Physical and electrochemical characteristics of nickel hydroxide as a positive material for rechargeable alkaline batteries. J. Appl. Electrochem. 1995, 25, 219–226. [Google Scholar] [CrossRef]
- Avena, M.J.; Vazquez, M.V.; Carbonio, R.E.; De Pauli, C.P.; Macagno, V.A. A simple and novel method for preparing Ni(OH)2 Part I: Structural studies and voltammetric response. J. Appl. Electrochem. 1994, 24, 256–260. [Google Scholar] [CrossRef]
- Fierro, C.; Zallen, A.; Koch, J.; Fetcenko, M.A. The Influence of Nickel-Hydroxide Composition and Microstructure on the High-Temperature Performance of Nickel Metal Hydride Batteries. J. Electrochem. Soc. 2006, 153, A492. [Google Scholar] [CrossRef]
- Ramesh, T.N.; Kamath, P.V. Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. J. Power Sources 2006, 156, 655–661. [Google Scholar] [CrossRef]
- Cabanas-Polo, S.; Suslick, K.S.; Sanchez-Herencia, A.J. Effect of reaction conditions on size and morphology of ultrasonically prepared Ni(OH)2 powders. Ultrason. Sonochem. 2011, 18, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Solomane, N.; Ajibade, P.A.; Omondi, B. Crystal structure of sodium morpholine-4-carbodithioate, (C5H12NNaO3S2). Open Access 2019, 234, 605–607. [Google Scholar] [CrossRef]
- Matthews, J.A. Chemical Precipitation. Encycl. Environ. Chang. 2014, 3, 141–142. [Google Scholar] [CrossRef]
- Song, Q.; Tang, Z.; Guo, H.; Chan, S.L.I. Structural characteristics of nickel hydroxide synthesized by a chemical precipitation route under different pH values. J. Power Sources 2002, 112, 428–434. [Google Scholar] [CrossRef]
- Ludwig, R.D.; McGregor, R.G.; Blowes, D.W.; Benner, S.G.; Mountjoy, K. A permeable reactive barrier for treatment of heavy metals. Ground Water 2002, 40, 59–66. [Google Scholar] [CrossRef]
- Endo, M.; Yoshikawa, E.; Tamaki, Y.; Hara, A.; Hikichi, K.; Sasaki, A. Variations in the Concentration of Dissolved Metal Ions and their Buffering Effect in an Acidified River Environment. J. Water Environ. Technol. 2012, 10, 463–471. [Google Scholar] [CrossRef]
- Wanta, K.C.; Tanujaya, F.H.; Putra, F.D.; Susanti, R.F.; Gemilar, G.P.; Astuti, W.; Petrus, H.T.B.M. Synthesis and Characterization of Nickel Hydroxide From Extraction Solution of Spent Catalyst. Metalurgi 2020, 35, 111. [Google Scholar] [CrossRef]
- Hidmi, L.; Edwards, M. Role of temperature and pH in Cu(OH)2 solubility. Environ. Sci. Technol. 1999, 33, 2607–2610. [Google Scholar] [CrossRef]
- Asakai, T.; Suzuki, T. Reliability in Standardization of Iron(III) and Titanium(III) Solutions in Volumetric Analysis. ACS Omega 2021, 6, 21147–21152. [Google Scholar] [CrossRef] [PubMed]
- Mabowa, H.M.; Mkhohlakali, A.; Mokoena, S.; Tshilongo, J.; Chimuka, L. Removal of Nickel from Nickel Sulfite-Fire Assay Dissolution Filtrate Through Precipitation. ACS Omega 2023, 9, 5592–5600. [Google Scholar] [CrossRef]
- Nozari, I.; Azizi, A. An Investigation into the Extraction Behavior of Copper from Sulfate Leach Liquor Using Acorga M5640 Extractant: Mechanism, Equilibrium, and Thermodynamics. Min. Metall. Explor. 2020, 37, 1673–1680. [Google Scholar] [CrossRef]
- Younas, M.; Druon-Bocquet, S.; Romero, J.; Sanchez, J. Experimental and Theoretical Investigation of Distribution Equilibria and Kinetics of Copper(II) Extraction with LIX 84 I and TFA. Sep. Sci. Technol. 2015, 50, 1523–1531. [Google Scholar] [CrossRef]
- Basturkcu, H.; Acarkan, N. Selective nickel-iron separation from atmospheric leach liquor of a lateritic nickel ore using the para-goethite method. Physicochem. Probl. Miner. Process. 2017, 53, 212–226. [Google Scholar] [CrossRef]
- Kettaf, S.; Guellati, O.; Harat, A.; Kennaz, H.; Momodu, D.; Dangbegnon, J.; Manyala, N.; Guerioune, M. Electrochemical measurements of synthesized nanostructured β-Ni(OH)2 using hydrothermal process and activated carbon based nanoelectroactive materials. SN Appl. Sci. 2019, 1, 34. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, Y.; Huang, X.; Shen, W.; Yu, J.; Li, J. A Facile Synthesis of Three Dimensional β-Ni(OH)2 Composed of Ultrathin Nanosheets for High Performance Pseudocapacitor. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2089–2097. [Google Scholar] [CrossRef]
- Narayan, R.T. Effect of Crystallinity of β- and β bc-Nickel Hydroxide Samples on Chemical Cycling. Indian J. Mater. Sci. 2015, 2015, 820193. [Google Scholar] [CrossRef]
Element Composition | Al | Ca | K | Mn | Na | Co | Pb | S | Zn | Cu | Fe | Cl | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (ppm) | 7.3 | 4.53 | 22.5 | 6.7 | 210 | 9.8 | 10 | 162 | 73.9 | 3900 | 4720 | 80,000 | 50,130 |
Solution Sample | |||||
---|---|---|---|---|---|
Element | Precursor Solution | pH 2.5 | Wash | pH 6.5 | |
Cu | ppm | 801 | 501 | 23.3 | 95.7 |
Fe | 2197.5 | 2.3 | 1.3 | 0 | |
Ni | 50,130 | 3700 | 1800 | 600 | |
Co | 43 | 26.4 | 1.5 | 0.7 | |
Ca | 0 | 47,400 | 2300 | 57,200 | |
Al | 1 | 10.8 | 1.2 | 1.1 | |
Zn | 72.7 | 40.2 | 2.2 | 0 | |
S | 134.1 | 446 | 19.7 | 456.3 | |
Mg | 0 | 461.9 | 23.9 | 375 | |
Pb | 14 | 8 | 0.2 | 0 |
Element | Peak BE (eV) | Atomic % |
---|---|---|
C 1s | 285.2 | 36.1 |
O 1s | 531.7 | 23.5 |
Cl 2p | 199.3 | 22.4 |
Ni 2p | 856.2 | 11.8 |
Ca 2p | 348.1 | 5.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabowa, M.H.; Mkhohlakali, A.; Chimuka, L.; Tshilongo, J. Separation and Characterization of Nickel Hydroxide from Waste Solution Using Ca(OH)2 Precipitation in Chloride Media. Separations 2024, 11, 96. https://doi.org/10.3390/separations11040096
Mabowa MH, Mkhohlakali A, Chimuka L, Tshilongo J. Separation and Characterization of Nickel Hydroxide from Waste Solution Using Ca(OH)2 Precipitation in Chloride Media. Separations. 2024; 11(4):96. https://doi.org/10.3390/separations11040096
Chicago/Turabian StyleMabowa, Mothepane Happy, Andile Mkhohlakali, Luke Chimuka, and James Tshilongo. 2024. "Separation and Characterization of Nickel Hydroxide from Waste Solution Using Ca(OH)2 Precipitation in Chloride Media" Separations 11, no. 4: 96. https://doi.org/10.3390/separations11040096
APA StyleMabowa, M. H., Mkhohlakali, A., Chimuka, L., & Tshilongo, J. (2024). Separation and Characterization of Nickel Hydroxide from Waste Solution Using Ca(OH)2 Precipitation in Chloride Media. Separations, 11(4), 96. https://doi.org/10.3390/separations11040096