Accelerated Development of AAV Purification Process Using a High-Throughput and Automated Crossflow System
Abstract
:1. Introduction
2. Materials and Methods
2.1. AAV8 Production
2.2. High-Throughput TFF Step Development Using Ambr® Crossflow
2.3. Transfer of the TFF Step to a Larger Scale Using Sartoflow® Smart
2.4. Analytical Methods
3. Results and Discussion
3.1. High-Throughput TFF Step Development Using Ambr® Crossflow: Small-Scale Screening Experiments
3.2. Characterization of the Flat Sheet Membrane Process Scale-Up and Hollow Fiber Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- El Andari, J.; Grimm, D. Production, Processing, and Characterization of Synthetic AAV Gene Therapy Vectors. Biotechnol. J. 2021, 16, e2000025. [Google Scholar] [CrossRef] [PubMed]
- Moleirinho, M.G.; Silva, R.J.S.; Alves, P.M.; Carrondo, M.J.T.; Peixoto, C. Current challenges in biotherapeutic particles manufacturing. Expert. Opin. Biol. Ther. 2020, 20, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Au, H.K.E.; Isalan, M.; Mielcarek, M. Gene Therapy Advances: A Meta-Analysis of AAV Usage in Clinical Settings. Front. Med. 2021, 8, 809118. [Google Scholar] [CrossRef]
- Kotin, R.M. Large-scale recombinant adeno-associated virus production. Hum. Mol. Genet. 2011, 20, R2–R6. [Google Scholar] [CrossRef] [PubMed]
- Vicente, T.; Mota, J.P.; Peixoto, C.; Alves, P.M.; Carrondo, M.J. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: Current advances. Biotechnol. Adv. 2011, 29, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Loewe, D.; Dieken, H.; Grein, T.A.; Salzig, D.; Czermak, P. A Combined Ultrafiltration/Diafiltration Process for the Purification of Oncolytic Measles Virus. Membranes 2022, 12, 105. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.M.; Holstein, M.A. Downstream bioprocessing: Recent advances and future promise. Curr. Opin. Chem. Eng. 2011, 1, 27–37. [Google Scholar] [CrossRef]
- Lacki, K.M.; Brekkan, E. High throughput screening techniques in protein purification. Methods Biochem. Anal. 2011, 54, 489–506. [Google Scholar] [PubMed]
- Fernandez-Cerezo, L.; Rayat, A.; Chatel, A.; Pollard, J.M.; Lye, G.J.; Hoare, M. An ultra scale-down method to investigate monoclonal antibody processing during tangential flow filtration using ultrafiltration membranes. Biotechnol. Bioeng. 2019, 116, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Cerezo, L.; Wismer, M.K.; Han, I.; Pollard, J.M. High throughput screening of ultrafiltration and diafiltration processing of monoclonal antibodies via the ambr(R) crossflow system. Biotechnol. Prog. 2020, 36, e2929. [Google Scholar] [CrossRef]
- Blanco, J.; Nguyen, Q.; Schaetzel, P. Sulfonation of polysulfones: Suitability of the sulfonated materials for asymmetric membrane preparation. J. App. Polym. Sci. 2002, 84, 2461–2473. [Google Scholar] [CrossRef]
- Beer, H.; Demmer, W.; HÖRL, H.-H.; Melzner, D.; Nussbaumer, D.; Schmidt, H.-W.; Wünn, E. Hydrophilic Porous Membranes Made of Cross-Linked Cellulose Hydrate, Method of Producing Them and Their Use; European Patent Office: Munich, Germany, 2001; p. EP0762929B1. [Google Scholar]
- Borujeni, E.; Betts, J.; Jenke, M.; Pollard, J. Applications of an Automated High Throughput Crossflow System for Ultrafiltration Process Development to Assess Manufacturability of Monoclonal Antibodies. Application Note. 2019. Available online: https://www.sartorius.com/download/714524/ambr-cf-hts-scale-down-model-mab-application-note-en-b-25463-1--data.pdf (accessed on 17 January 2024).
- Fernandez-Cerezo, L.; Benner, S.W.; Pollard, J.M. Streamlining process characterization efforts using the high throughput ambr® crossflow system for ultrafiltration and diafiltration processing of monoclonal antibodies. Biotechnol. Prog. 2021, 37, e3118. [Google Scholar] [CrossRef]
- Gibson, D.; Betts, J.; Jenke, M.; Lewis, W. Optimizing Diafiltration Parameters for Maximum Recovery of a Bispecific Antibody Using Low Process Volumes and an Automated High Throughput Crossflow System. Application Note. 2019. Available online: https://www.sartorius.com/download/714528/appl-note-ambr-cf-hts-manufacturability-bsab-sl-4086-e-pdf-data.pdf (accessed on 17 January 2024).
- Arunkumar, A.; Singh, N. Ultrafiltration behavior of recombinant adeno associated viral vectors used in gene therapy. J. Membr. Sci. 2021, 620, 118812. [Google Scholar] [CrossRef]
- Baitalow, K.; Wypysek, D.; Leuthold, M.; Weisshaar, S.; Lölsberg, J.; Wessling, M. A mini-module with built-in spacers for high-throughput ultrafiltration. J. Membr. Sci. 2021, 637, 119602. [Google Scholar] [CrossRef]
- Thiess, H.; Leuthold, M.; Grummert, U.; Strube, J. Module design for ultrafiltration in biotechnology: Hydraulic analysis and statistical modeling. J. Membr. Sci. 2017, 540, 440–453. [Google Scholar] [CrossRef]
- Mendes, J.P.; Bergman, M.; Solbrand, A.; Peixoto, C.; Carrondo, M.J.T.; Silva, R.J.S. Continuous Affinity Purification of Adeno-Associated Virus Using Periodic Counter-Current Chromatography. Pharmaceutics 2022, 14, 1346. [Google Scholar] [CrossRef]
- Escandell, J.; Moura, F.; Carvalho, S.B.; Silva, R.J.S.; Correia, R.; Roldão, A.; Gomes-Alves, P.; Alves, P.M. Towards a scalable bioprocess for rAAV production using a HeLa stable cell line. Biotechnol. Bioeng. 2023, 120, 2578–2587. [Google Scholar] [CrossRef]
PES | Hydrosart® | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
MWCO (kDa) | QFeed (mL/min) | TMP (mbar) | TP Recov. (%) | Avg. Flux (LMH) | Protein Remov. (%) | DNA Remov. (%) | TP Recov. (%) | Av. Flux (LMH) | Protein Remov. (%) | DNA Remov. (%) |
30 | 50 | 600 | 89 | 23 | 74 | 33 | 86 | 49 | 81 | 13 |
50 | 900 | 86 | 26 | 77 | 35 | 74 | 36 | 82 | 19 | |
75 | 600 | 97 | 27 | 75 | 22 | 69 | 55 | 81 | 25 | |
75 | 900 | 85 | 32 | 78 | 30 | 80 | 54 | 81 | 18 | |
62.5 | 750 | 95 | 23 | 78 | 35 | 82 | 46 | 80 | 19 | |
62.5 | 750 | 92 | 27 | 101 | 31 | 88 | 54 | 81 | 23 | |
62.5 | 750 | 93 | 25 | 78 | 23 | 91 | 56 | 73 | 37 | |
100 | 50 | 300 | 85 | 46 | 90 | 69 | 84 | 50 | 84 | 53 |
50 | 600 | 77 | 30 | 83 | 41 | 79 | 36 | 81 | 42 | |
75 | 300 | 93 | 63 | 88 | 72 | 85 | 66 | 84 | 57 | |
75 | 600 | 80 | 38 | 87 | 52 | 86 | 43 | 77 | 37 | |
62.5 | 450 | 83 | 50 | 83 | 43 | 86 | 45 | 79 | 49 | |
62.5 | 450 | 80 | 52 | 86 | 57 | 82 | 41 | 77 | 39 | |
62.5 | 450 | 88 | 46 | 86 | 55 | 77 | 45 | 79 | 47 |
Device | Run | QFeed (mL/min) | TMP (mbar) | TP Recovery (%) | Average Flux (LMH) | Protein Removal (%) | DNA Removal (%) |
---|---|---|---|---|---|---|---|
Flat sheet cassette 100 kDa PES | 1st | 260 | 600 | 93 | 38 | 79 | 29 |
2nd | 90 | 36 | 79 | 41 | |||
3rd | 90 | 37 | 80 | 37 | |||
Hollow fiber 100 kDa PES 0.5 mm ID | 1st | 212 | 300 | 88 | 19 | 75 | 63 |
2nd | 88 | 18 | 73 | 63 | |||
3rd | 86 | 20 | 75 | 65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, S.; Faria, T.Q.; Nascimento, A.; Noverraz, M.; Bollmann, F.; Nestola, P.; Roldão, A.; Peixoto, C.; Silva, R.J.S. Accelerated Development of AAV Purification Process Using a High-Throughput and Automated Crossflow System. Separations 2024, 11, 73. https://doi.org/10.3390/separations11030073
Mendes S, Faria TQ, Nascimento A, Noverraz M, Bollmann F, Nestola P, Roldão A, Peixoto C, Silva RJS. Accelerated Development of AAV Purification Process Using a High-Throughput and Automated Crossflow System. Separations. 2024; 11(3):73. https://doi.org/10.3390/separations11030073
Chicago/Turabian StyleMendes, Sónia, Tiago Q. Faria, André Nascimento, Marc Noverraz, Franziska Bollmann, Piergiuseppe Nestola, António Roldão, Cristina Peixoto, and Ricardo J. S. Silva. 2024. "Accelerated Development of AAV Purification Process Using a High-Throughput and Automated Crossflow System" Separations 11, no. 3: 73. https://doi.org/10.3390/separations11030073
APA StyleMendes, S., Faria, T. Q., Nascimento, A., Noverraz, M., Bollmann, F., Nestola, P., Roldão, A., Peixoto, C., & Silva, R. J. S. (2024). Accelerated Development of AAV Purification Process Using a High-Throughput and Automated Crossflow System. Separations, 11(3), 73. https://doi.org/10.3390/separations11030073