Risk Characterization of Botanical Extracts Containing Hydroxyanthracenes as Determined by a Validated Micronucleus In Vitro Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extract Preparation
2.2. Extract Characterization
2.3. Peripheral Blood Lymphocyte Cultures
2.4. Mammalian Microsomal Fraction S9 Mix
2.5. Concentration Selection, Treatments, and Micronucleus Assay Preparation
2.6. Slide Evaluation and Cytotoxicity Analysis
2.7. Statistical Analysis
3. Results
3.1. Characterization
3.2. Cytokinesis-Block Proliferation Index and Cytostasis
3.3. Micronuclei
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pace, R.; Martinelli, E.M. The Phytoequivalence of Herbal Extracts: A Critical Evaluation. Fitoterapia 2022, 162, 105262. [Google Scholar] [CrossRef]
- EFSA ANS Panel; Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Filipi, M.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; et al. Safety of Hydroxyanthracene Derivatives for Use in Food. EFSA J. 2018, 16, e05090. [Google Scholar] [CrossRef] [PubMed]
- European Commission Commission Regulation (EU) 2021/468 of 18 March 2021 Amending Annex III to Regulation (EC) No 1925/2006 of the European Parliament and of the Council as Regards Botanical Species Containing Hydroxyanthracene Derivatives 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32021R0468 (accessed on 7 January 2024).
- WHO. WHO Monographs on Selected Medicinal Plants; World Health Organization: Geneva, Switzerland, 1999; Volume 1, pp. 39–40. [Google Scholar]
- Committee on Herbal Medicinal Products (HMPC) Assessment Report on Rheum palmatum L. and Rheum Officinale Baillon, Radix. 2019; Volume 31. Available online: https://www.fitoterapia.net/archivos/202008/final-assessment-report-rheum-palmatum-l-rheum-officinale-baillon-radix-revision-1_en.pdf?1 (accessed on 7 January 2024).
- European Pharmacopoeia. European Directorate for the Quality of Medicines, 4th ed.; European Pharmacopoeia, Directorate for the Quality of Medicines, Council of Europe: Strasbourg, France, 2001. [Google Scholar]
- State Pharmacopoeia of the People’s Republic of China. State Pharmacopoeia Committee; Press, C.I., Ed.; First Div.: Beijing, China, 2010. [Google Scholar]
- Öztürk, M.; Aydoǧmuş-Öztürk, F.; Duru, M.E.; Topçu, G. Antioxidant Activity of Stem and Root Extracts of Rhubarb (Rheum Ribes): An Edible Medicinal Plant. Food Chem. 2007, 103, 623–630. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, H.; Kong, W.; Jin, C.; Zhao, Y.; Qu, Y.; Xiao, X. Microcalorimetric Assay on the Antimicrobial Property of Five Hydroxyanthraquinone Derivatives in Rhubarb (Rheum palmatum L.) to Bifidobacterium adolescentis. Phytomedicine 2010, 17, 684–689. [Google Scholar] [CrossRef]
- National Institute of Diabetes and Digestive and Kidney Diseases. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012. [Google Scholar]
- Van den Berg, A.J.J.; Labadie, R.P. Anthraquinones, Anthrones and Dianthrones in Callus Cultures of Rhamnus Frangula and Rhamnus Purshiana. Planta Med. 1984, 50, 449–451. [Google Scholar] [CrossRef] [PubMed]
- Galli, C.L.; Cinelli, S.; Ciliutti, P.; Melzi, G.; Marinovich, M. Lack of in Vivo Genotoxic Effect of Dried Whole Aloe Ferox Juice. Toxicol. Rep. 2021, 8, 1471–1474. [Google Scholar] [CrossRef] [PubMed]
- Galli, C.L.; Cinelli, S.; Ciliutti, P.; Melzi, G.; Marinovich, M. Aloe-Emodin, a Hydroxyanthracene Derivative, Is Not Genotoxic in an in vivo Comet Test. Regul. Toxicol. Pharmacol. 2021, 124, 104967. [Google Scholar] [CrossRef]
- Melzi, G.; Galli, C.L.; Ciliutti, P.; Marabottini, C.; Marinovich, M. Lack of Genotoxicity of Rhubarb (Rhizome) in the Ames and Micronucleus in Vitro Tests. Toxicol. Rep. 2022, 9, 1574–1579. [Google Scholar] [CrossRef]
- Lorge, E.; Thybaud, V.V.V.; Aardema, M.J.; Oliver, J.; Wakata, A.; Lorenzon, G.; Marzin, D.; Clare, M.G.; Lorenzon, G.; Akhurst, L.C.; et al. SFTG International Collaborative Study on in Vitro Micronucleus Test. Mutat. Res. Toxicol. Environ. Mutagen. 2006, 607, 13–36. [Google Scholar] [CrossRef]
- Whitwell, J.; Smith, R.; Chirom, T.; Watters, G.; Hargreaves, V.; Lloyd, M.; Phillips, S.; Clements, J. Inclusion of an Extended Treatment with Recovery Improves the Results for the Human Peripheral Blood Lymphocyte Micronucleus Assay. Mutagenesis 2019, 34, 217–237. [Google Scholar] [CrossRef]
- Countryman, P.I.; Heddle, J.A. The Production of Micronuclei from Chromosome Aberrations in Irradiated Cultures of Human Lymphocytes. Mutat. Res. Mol. Mech. Mutagen. 1976, 41, 321–331. [Google Scholar] [CrossRef]
- Xiang, H.; Zuo, J.; Guo, F.; Dong, D. What We Already Know about Rhubarb: A Comprehensive Review. Chin. Med. 2020, 15, 88. [Google Scholar] [CrossRef]
- Brown, J.P. A Review of the Genetic Effects of Naturally Occurring Flavonoids, Anthraquinones and Related Compounds. Mutat. Res. Genet. Toxicol. 1980, 75, 243–277. [Google Scholar] [CrossRef]
- Lang, W. Pharmacokinetic-Metabolic Studies with 14C-Aloe Emodin after Oral Administration to Male and Female Rats. Pharmacology 1993, 47 (Suppl. S1), 110–119. [Google Scholar] [CrossRef]
- Westendorf, J.; Marquardt, H.; Poginsky, B.; Dominiak, M.; Schmidt, J.; Marquardt, H. Genotoxicity of Naturally Occurring Hydroxyanthraquinones. Mutat. Res. Toxicol. 1990, 240, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Loew, D. Pseudomelanosis Coli Durch Anthranoide. Z. Für Prakt. 1994, 16, 312–318. [Google Scholar]
- Patel, P.M.; Selby, P.J.; Deacon, J.; Chilvers, C.; McElwain, T.J. Anthraquinone Laxatives and Human Cancer: An Association in One Case. Postgrad. Med. J. 1989, 65, 216–217. [Google Scholar] [CrossRef] [PubMed]
- Siegers, C.-P. Anthranoid Laxatives Colorectal Cancer. Trends Pharmacol. Sci. 1992, 13, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Siegers, C.P.; von Hertzberg-Lottin, E.; Otte, M.; Schneider, B. Anthranoid Laxative Abuse—A Risk for Colorectal Cancer? Gut 1993, 34, 1099–1101. [Google Scholar] [CrossRef] [PubMed]
- Yokohira, M.; Matsuda, Y.; Suzuki, S.; Hosokawa, K.; Yamakawa, K.; Hashimoto, N.; Saoo, K.; Nabae, K.; Doi, Y.; Kuno, T.; et al. Equivocal Colonic Carcinogenicity of Aloe Arborescens Miller Var. Natalensis Berger at High-Dose Level in a Wistar Hannover Rat 2-y Study. J. Food Sci. 2009, 74, T24–T30. [Google Scholar] [CrossRef] [PubMed]
- Al-Malahmeh, A.J.; Al-ajlouni, A.M.; Wesseling, S.; Vervoort, J.; Rietjens, I.M.C.M. Determination and Risk Assessment of Naturally Occurring Genotoxic and Carcinogenic Alkenylbenzenes in Basil-Containing Sauce of Pesto. Toxicol. Rep. 2017, 4, 1–8. [Google Scholar] [CrossRef]
- Alhusainy, W.; Paini, A.; van den Berg, J.H.J.; Punt, A.; Scholz, G.; Schilter, B.; van Bladeren, P.J.; Taylor, S.; Adams, T.B.; Rietjens, I.M.C.M. In Vivo Validation and Physiologically Based Biokinetic Modeling of the Inhibition of SULT-Mediated Estragole DNA Adduct Formation in the Liver of Male Sprague-Dawley Rats by the Basil Flavonoid Nevadensin. Mol. Nutr. Food Res. 2013, 57, 1969–1978. [Google Scholar] [CrossRef] [PubMed]
- Jeurissen, S.M.F.; Punt, A.; Delatour, T.; Rietjens, I.M.C.M. Basil Extract Inhibits the Sulfotransferase Mediated Formation of DNA Adducts of the Procarcinogen 1′-Hydroxyestragole by Rat and Human Liver S9 Homogenates and in HepG2 Human Hepatoma Cells. Food Chem. Toxicol. 2008, 46, 2296–2302. [Google Scholar] [CrossRef] [PubMed]
- Marabini, L.; Galli, C.L.; La Fauci, P.; Marinovich, M. Effect of Plant Extracts on the Genotoxicity of 1′-Hydroxy Alkenylbenzenes. Regul. Toxicol. Pharmacol. 2019, 105, 36–41. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, S.J.P.L.; Klaus, V.; Alhusainy, W.; Rietjens, I.M.C.M. Matrix-Derived Combination Effect and Risk Assessment for Estragole from Basil-Containing Plant Food Supplements (PFS). Food Chem. Toxicol. 2013, 62, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Chae, J.-I.; Shim, J.-H. Rhein Exhibits Antitumorigenic Effects by Interfering with the Interaction between Prolyl Isomerase Pin1 and C-Jun. Oncol. Rep. 2017, 37, 1865–1872. [Google Scholar] [CrossRef] [PubMed]
- EMA. Assessment Report for Rhubarb (Rhei Radix); European Medicines Agency: London, UK, 2008. [Google Scholar]
- Lee, J.-H.; Kim, J.M.; Kim, C. Pharmacokinetic Analysis of Rhein in Rheum undulatum L. J. Ethnopharmacol. 2003, 84, 5–9. [Google Scholar] [CrossRef]
- Heidemann, A.; Miltenburger, H.G.; Mengs, U. The Genotoxicity Status of Senna. Pharmacology 1993, 47 (Suppl. S1), 178–186. [Google Scholar] [CrossRef]
- Mengs, U.; Krumbiegel, G.; Völkner, W. Lack of Emodin Genotoxicity in the Mouse Micronucleus Assay. Mutat. Res. Toxicol. Environ. Mutagen. 1997, 393, 289–293. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Chiang, S.-Y.; Lin, J.-G.; Yang, J.-S.; Ma, Y.-S.; Liao, C.-L.; Lai, T.-Y.; Tang, N.-Y.; Chung, J.-G. Emodin, Aloe-Emodin and Rhein Induced DNA Damage and Inhibited DNA Repair Gene Expression in SCC-4 Human Tongue Cancer Cells. Anticancer Res. 2010, 30, 945–951. [Google Scholar]
- Heidemann, A.; Völkner, W.; Mengs, U. Genotoxicity of Aloeemodin in Vitro and in Vivo. Mutat. Res. Toxicol. 1996, 367, 123–133. [Google Scholar] [CrossRef]
- Müller, S.O.; Eckert, I.; Lutz, W.K.; Stopper, H. Genotoxicity of the Laxative Drug Components Emodin, Aloe-Emodin and Danthron in Mammalian Cells: Topoisomerase II Mediated? Mutat. Res. 1996, 371, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Nesslany, F.; Simar-meintières, S.; Ficheux, H.; Marzin, D. Aloe-Emodin-Induced DNA Fragmentation in the Mouse in vivo Comet Assay. Mutat. Res. Toxicol. Environ. Mutagen. 2009, 678, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Haßler, S.; Jung, K.; Kelber, O.; Feistel, B.; Steinhoff, B.; Nieber, K. P08-22 Assessment of the Genotoxic Safety of Herbal Drug Preparations Containing Anthraquinone Derivatives. Toxicol. Lett. 2022, 368, S149–S150. [Google Scholar] [CrossRef]
- Williams, L.D.; Burdock, G.A.; Shin, E.; Kim, S.; Jo, T.H.; Jones, K.N.; Matulka, R.A. Safety Studies Conducted on a Proprietary High-Purity Aloe Vera Inner Leaf Fillet Preparation, Qmatrix®. Regul. Toxicol. Pharmacol. 2010, 57, 90–98. [Google Scholar] [CrossRef]
Extract | Exposure | Concentrations in µg/mL | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PAL | |||||||||||
Without S9 | 3 h 28 h | 16.2 -- | 28.4 75.0 | 49.7 131 | 87.0 230 | 152 402 | 267 482 | 466 P 579 | 816 P 649 | 1429 P 833 | 2500 P 1000 P |
With S9 | 3 h | 16.2 | 28.4 | 49.7 | 87.0 | 152 | 267 | 466 P | 816 P | 1429 P | 2500 P |
PUR | |||||||||||
Without S9 | 3 h 28 h | 13.0 -- | 22.7 -- | 39.8 63.2 | 69.9 111 | 122 193 | 213 339 | 373 593 | 653 889 | 1143 P 1333 P | 2000 P 2000 P |
With S9 | 3 h | 13.0 | 22.7 | 39.8 | 69.6 | 122 | 213 | 373 | 653 | 1143 P | 2000 P |
FRA | |||||||||||
Without S9 | 3 h 28 h | 16.2 -- | 28.4 -- | 50.0 39.8 | 87.0 69.6 | 152 122 | 267 213 | 466 373 | 816 P 653 | 1429 P 1143 P | 2500 P 2000 P |
With S9 | 3 h | 16.2 | 28.4 | 50.0 | 87.0 | 152 | 267 | 466 | 816 P | 1429 P | 2500 P |
CSF | |||||||||||
Without S9 | 3 h 28 h | 32.5 -- | 56.8 -- | 99.5 -- | 174 -- | 305 305 | 533 533 | 933 933 | 1633 1633 | 2857 2857 | 5000 5000 |
With S9 | 3 h | 32.5 | 56.8 | 99.5 | 174 | 305 | 533 | 933 | 1633 | 2857 | 5000 |
CSL | |||||||||||
Without S9 | 3 h 28 h | 18.9 -- | 33.2 -- | 58.0 99.5 | 102 174 | 178 305 | 311 533P | 544 P 933 P | 952 P 1633 P | 1667 P 2857 P | 5000 P 5000 P |
With S9 | 3 h | 18.9 | 33.2 | 58.0 | 102 | 178 | 311 | 544 | 952 P | 1667 P | 5000 P |
(a) | |||||
PAL | PUR | FRA | CSF | CSL | |
Loss on drying | 2.30 | 4.00 | 3.20 | 4.50 | 3.70 |
Hydroxyanthracene Glycosides | 5.50 | 19.50 | n.a. | n.a. | n.a. |
Cascarosides | n.a. | 78.70 | n.a. | n.a. | n.a. |
Glucofrangulins | n.a. | n.a. | 16.85 | n.a. | n.a. |
Sennoside B a | n.a. | n.a. | n.a. | 19.14 | n.a. |
Sennoside B b | n.a. | n.a. | n..a. | n.a. | 8.90 |
(b) | |||||
PAL | PUR | FRA | CSF | CSL | |
Aloin A | n.d. | 0.57 | n.d. | Traces | Traces |
Aloin B | n.d. | 0.49 | n.d. | 0.032 | 0.016 |
Aloe-emodin | 0.10 | 0.06 | 0.23 | Traces | 0.02 |
Rhein | 0.20 | 0.00 | n.d. | 0.075 | 0.09 |
Emodin | 0.10 | 0.16 | 0.07 | Traces | Traces |
Exposure Time | S9 Mix | Concentration (µg/mL) | CBPI | Cytostasis in % | Micronucleated Cells in % |
---|---|---|---|---|---|
3 h | − | DMSO a | 1.68 | - | 0.95 |
MMC 0.6 | 1.47 | 30.4 | 7.45 * | ||
87.0 | 1.53 | 21.2 | 0.55 | ||
152 | 1.51 | 24.7 | 0.45 | ||
267 | 1.49 | 27.9 | 0.50 | ||
Trend test: p-value 0.220 | |||||
3 h | + | DMSO | 1.65 | - | 0.68 |
CPA 15.0 | 1.49 | 25.6 | 3.15 * | ||
152 | 1.62 | 4.7 | 0.63 | ||
267 | 1.65 | n.c. | 0.85 | ||
466 P | 1.60 | 8.9 | 1.10 * | ||
Trend test: p-value 0.557 | |||||
28 h | − | DMSO | 1.70 | - | 0.25 |
VIN 12.5 b | 1.59 | 16.1 | 3.10 * | ||
402 | 1.50 | 28.7 | 0.45 | ||
482 | 1.41 | 42.5 | 0.65 | ||
579 | 1.34 | 51.7 | 0.40 | ||
Trend test: p-value 0.336 |
Exposure Time | S9 Mix | Concentration (µg/mL) | CBPI | Cytostasis in % | Micronucleated Cells in % |
---|---|---|---|---|---|
3 h | − | DMSO a | 1.65 | - | 0.40 |
MMC 0.8 | 1.42 | 35.5 | 3.95 * | ||
373 | 1.58 | 12.1 | 0.45 | ||
653 | 1.60 | 7.8 | 0.40 | ||
1143 P | 1.57 | 12.8 | 0.55 | ||
Trend test: p-value 0.201 | |||||
3 h | + | DMSO | 1.83 | - | 0.30 |
CPA 10.0 | 1.46 | 44.5 | 1.75 * | ||
373 | 1.79 | 5.0 | 0.55 | ||
653 | 1.53 | 36.3 | 0.40 | ||
1143 P | 1.80 | 3.8 | 0.15 | ||
Trend test: p-value 0.784 | |||||
28 h | − | DMSO | 1.64 | - | 0.40 |
VIN 12.5 b | 1.33 | 48.5 | 4.25 * | ||
402 | 1.52 | 18.4 | 0.25 | ||
482 | 1.49 | 23.7 | 0.55 | ||
579 | 1.39 | 38.5 | 0.40 | ||
Trend test: p-value 0.501 |
Exposure Time | S9 Mix | Concentration (µg/mL) | CBPI | Cytostasis in % | Micronucleated Cells in % |
---|---|---|---|---|---|
3 h | − | DMSO a | 1.78 | - | 0.65 |
MMC 0.8 | 1.58 | 25.0 | 6.00 * | ||
267 | 1.97 | n.c. | 0.00 | ||
466 | 1.91 | n.c. | 0.45 | ||
816 P | 1.86 | n.c. | 0.15 | ||
Trend test: p-value 0.496 | |||||
3 h | + | DMSO | 1.66 | - | 0.55 |
CPA 15.0 | 1.45 | 31.2 | 3.60 * | ||
152 | 1.78 | n.c. | 0.50 | ||
267 | 1.45 | 32.4 | 0.90 | ||
466 P | 1.37 | 44.2 | 0.85 | ||
Trend test: p-value 0.163 | |||||
28 h | − | DMSO | 1.50 | - | 0.50 |
VIN 12.5 b | 1.20 | 60.5 | 6.00 * | ||
402 | 1.49 | 2.2 | 0.20 | ||
482 | 1.58 | n.c. | 0.35 | ||
579 | 1.43 | 13.8 | 0.25 | ||
Trend test: p-value 0.393 |
Exposure Time | S9 Mix | Concentration (µg/mL) | CBPI | Cytostasis in % | Micronucleated Cells in % |
---|---|---|---|---|---|
3 h | − | Deionized water | 1.92 | - | 0.40 |
MMC 0.8 | 1.51 | 44.7 | 12.45 * | ||
1633 | 1.95 | n.c. | 0.30 | ||
2857 | 1.97 | n.c. | 0.40 | ||
5000 | 1.94 | n.c. | 0.40 | ||
Trend test: p-value 0.417 | |||||
3 h | + | Deionized water | 1.87 | - | 0.65 |
CPA 15.0 | 1.46 | 46.7 | 3.40 * | ||
1633 | 1.82 | 5.5 | 0.25 | ||
2857 | 1.84 | 3.0 | 0.15 | ||
5000 | 1.80 | 8.0 | 0.55 | ||
Trend test: p-value 0.680 | |||||
28 h | − | Deionized water | 2.04 | - | 0.40 |
VIN 7.5 a | 1.85 | 18.3 | 8.45 * | ||
1633 | 2.00 | 3.6 | 0.65 | ||
2857 | 1.92 | 11.2 | 0.50 | ||
5000 | 1.94 | 9.7 | 0.35 | ||
Trend test: p-value 0.861 |
Exposure Time | S9 Mix | Concentration (µg/mL) | CBPI | Cytostasis in % | Micronucleated Cells in % |
---|---|---|---|---|---|
3 h | − | Medium | 1.83 | - | 0.40 |
MMC 0.6 | 1.62 | 25.0 | 7.25 * | ||
178 | 1.82 | 0.8 | 0.85 | ||
311 | 1.82 | 0.6 | 0.35 | ||
544 P | 1.90 | n.c. | 0.30 | ||
Trend test: p-value 0.613 | |||||
3 h | + | Medium | 1.57 | - | 0.10 |
CPA 12.5 | 1.50 | 11.9 | 2.45 * | ||
311 | 1.63 | n.c. | 0.15 | ||
544 | 1.60 | n.c. | 0.10 | ||
952 P | 1.59 | n.c. | 0.15 | ||
Trend test: p-value 0.483 | |||||
28 h | − | Medium | 1.61 | - | 0.80 |
VIN 7.5 a | 1.35 | 42.3 | 5.40 * | ||
174 | 1.56 | 8.7 | 0.88 | ||
305 | 1.63 | n.c. | 1.05 | ||
533 P | 1.65 | n.c. | 1.00 | ||
Trend test: p-value 0.181 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melzi, G.; Galli, C.L.; Marinovich, M. Risk Characterization of Botanical Extracts Containing Hydroxyanthracenes as Determined by a Validated Micronucleus In Vitro Assay. Separations 2024, 11, 47. https://doi.org/10.3390/separations11020047
Melzi G, Galli CL, Marinovich M. Risk Characterization of Botanical Extracts Containing Hydroxyanthracenes as Determined by a Validated Micronucleus In Vitro Assay. Separations. 2024; 11(2):47. https://doi.org/10.3390/separations11020047
Chicago/Turabian StyleMelzi, Gloria, Corrado L. Galli, and Marina Marinovich. 2024. "Risk Characterization of Botanical Extracts Containing Hydroxyanthracenes as Determined by a Validated Micronucleus In Vitro Assay" Separations 11, no. 2: 47. https://doi.org/10.3390/separations11020047
APA StyleMelzi, G., Galli, C. L., & Marinovich, M. (2024). Risk Characterization of Botanical Extracts Containing Hydroxyanthracenes as Determined by a Validated Micronucleus In Vitro Assay. Separations, 11(2), 47. https://doi.org/10.3390/separations11020047