Utilizing Zn(Cu/Cr)Al-Layered Double Hydroxide-Based Photocatalysts for Effective Photodegradation of Environmental Pollutants
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis and Preparation of LDH-Based Photocatalysts
2.2. LDH-Based Photocatalyst Characterization Techniques
2.3. Photocatalytic Experiments
2.4. Analytical Methods
3. Results and Discussion
3.1. Characterization of LDH-Based Photocatalysts
3.2. Photocatalytic Activity of the Newly Synthesized LDHs Photocatalysts in the Removal of Selected Organic Pollutants Under Different Types of Irradiation
3.3. Effect of the Addition Various Scavengers on Photocatalytic Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R. Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends Plant. Sci. 2021, 26, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Downing, J.A.; Polasky, S.; Olmstead, S.M.; Newbold, S.C. Protecting local water quality has global benefits. Nat. Commun. 2021, 12, 2709. [Google Scholar] [CrossRef] [PubMed]
- Elgarahy, A.M.; Elwakeel, K.Z.; Akhdhar, A.; Hamza, M.F. Recent advances in greenly synthesized nanoengineered materials for water/wastewater remediation: An overview. Nanotechnol. Environ. Eng. 2021, 6, 9. [Google Scholar] [CrossRef]
- Bognár, S.; Maksimović, I.; Putnik, P.; Orčić, D.; Putnik-Delić, M.; Šojić Merkulov, D. Integrated approach for sustainable degradation of tolperisone hydrochloride from water by photodegradation: Chemometrics, chemical kinetics, intermediates, and environmental toxicity assessment. J. Photochem. Photobiol. A Chem. 2024, 453, 115628. [Google Scholar] [CrossRef]
- Quasthoff, S.; Mockel, C.; Zieglgansberger, W.; Schreibmayer, W. Tolperisone: A typical representative of a class of centrally acting muscle relaxants with less sedative side effects. CNS Neurosci. Ther. 2008, 14, 107–119. [Google Scholar] [CrossRef]
- EMA/753061/2012, Assessment Report for Tolperisone-Containing Medicinal Products. 2013. Available online: https://www.ema.europa.eu/en/documents/referral/assessment-report-tolperisone-containing-medicinal-products_en.pdf (accessed on 9 September 2024).
- Safety Data Sheet of Tolperisone Hydrochloride According to Regulation (EC) No. 1907/2006. 2013. Available online: https://assets.lgcstandards.com/sys-master%2Fpdfs%2Fh78%2Fh5e%2F10361547653150%2FSDS_MM0526.00_ST-WB-MSDS-3478056-1-1-1.PDF (accessed on 9 September 2024).
- Hassaan, M.A.; El Nemr, A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt. J. Aquat. Res 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Roberts, T.R.; Hutson, D.H.; Jewess, P.J.; Lee, P.; Nicholls, P.H. Metabolic Pathways of Agrochemicals, Volume 2: Insecticides and Fungicides; Plimmer, J., Ed.; Royal Society of Chemistry (RSC): Cambridge, UK, 1999. [Google Scholar]
- EFSA. Peer Review Report to the Conclusion Regarding the Peer Review of the Pesticide Risk Assessment of the Active Substance Quinmerac. EFSA J. 2010, 8, 1523. [Google Scholar]
- Mervosh, T.L.; Sims, G.K.; Stollert, E.W. Clomazone fate in soil as affected by microbial activity, temperature, and soil moisture. J. Agr. Food Chem. 1995, 43, 537–543. [Google Scholar] [CrossRef]
- MacBean, C. The Pesticide Manual, A World Compendium, 16th ed.; British Crop Protection Council: Hampshire, UK, 2012. [Google Scholar]
- Andres, A.; Concenço, G.; Theisen, G.; Vidotto, F.; Ferrero, A. Selectivity and weed control efficacy of pre- and post-emergence applications of clomazone in Southern Brazil. Crop Prot. 2013, 53, 103–108. [Google Scholar] [CrossRef]
- Manna, S.; Das, P.; Basak, P.; Sharma, A.K.; Singh, V.K.; Patel, R.K.; Pandey, J.K.; Ashokkumar, V.; Pugazhendhi, A. Separation of pollutants from aqueous solution using nanoclay and its nanocomposites: A review. Chemosphere 2021, 280, 130961. [Google Scholar] [CrossRef]
- Abideen, Z.U.; Teng, F. Fe2O3-Promoted Interface Charge Separation and Visible-light Activity of Fe2O3@ Zn0. 3Cd0. 7S. Mater. Chem. Phys. 2020, 246, 122811. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.G.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.G.; Bouizi, Y.; Fornés, V.; García, H. Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water. J. Am. Chem. Soc. 2009, 131, 13833–13839. [Google Scholar] [CrossRef]
- Li, C.M.; Wei, M.; Evans, D.G.; Duan, X. Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents. Small 2014, 10, 4469–4486. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, H.; Sun, Y.M.; Xiao, T.; Tu, W.G.; Yuan, X.Z.; Zeng, G.M.; Li, S.Z.; Chew, J.W. Photogenerated charge transfer via interfacial internal electric field for significantly improved photocatalysis in direct Z-scheme oxygen-doped carbon nitrogen/CoAl-layered double hydroxide heterojunction. Appl. Catal. B 2018, 227, 530–540. [Google Scholar] [CrossRef]
- Wang, Q.; O’Hare, D. Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets. Chem. Rev. 2012, 112, 4124–4155. [Google Scholar] [CrossRef]
- Carriazo, D.; del Arco, M.; Garcia-Lopez, E.; Marci, G.; Martin, C.; Palmisano, L.; Rives, V. Zn, Al hydrotalcites calcined at different temperatures: Preparation, characterization and photocatalytic activity in gas_solid regime. J. Molec. Catal. A. 2011, 342–343, 83–90. [Google Scholar] [CrossRef]
- Abderrazek, K.; Uheida, A.; Seffen, M.; Muhammed, M.; Frini Srasra, N.; Srasra, E. Photocatalytic degradation of indigo carmine using [Zn-Al] LDH supported on PAN nanofibers. Clay Miner. 2015, 50, 185–197. [Google Scholar] [CrossRef]
- Abramović, B.F.; Despotović, V.N.; Sojić, D.V.; Orcić, D.Z.; Csanadi, J.J.; Cetojević-Simin, D.D. Photocatalytic degradation of the herbicide clomazone in natural water using TiO2: Kinetics, mechanism, and toxicity of degradation products. Chemosphere 2013, 93, 166–171. [Google Scholar] [CrossRef]
- Sohail, M.; Kim, H.; Kim, T.W. Enhanced photocatalytic performance of a Ti-based metal-organic framework for hydrogen production: Hybridization with ZnCr-LDH nanosheets. Sci. Rep. 2019, 9, 7584. [Google Scholar] [CrossRef]
- Sadeghi Rad, T.; Khataee, A.; Arefi-Oskoui, S.; Sadeghi Rad, S.; Orooji, Y.; Gengec, E.; Kobya, M. Graphene-based ZnCr layered double hydroxide nanocomposites as bactericidal agents with high sonophotocatalytic performances for degradation of rifampicin. Chemosphere 2022, 286, 131740. [Google Scholar] [CrossRef] [PubMed]
- Kokulnathan, T.; Wang, T.J.; Ahmed, F.; Alshahrani, T. Hydrothermal synthesis of ZnCr-LDH/Tungsten carbide composite: A disposable electrochemical strip for mesalazine analysis. Chem. Eng. J. 2023, 451, 138884. [Google Scholar] [CrossRef]
- Dutta, K.; Das, S.; Pramanik, A. Concomitant synthesis of highly crystalline Zn-Al layered double hydroxide and ZnO: Phase interconversion and enhanced photocatalytic activity. J. Colloid Interface Sci. 2012, 366, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Karanovic, D.; Hadnadjev-Kostic, M.; Vulic, T.; Markov, S.; Tomic, A.; Miljevic, B.; Rajakovic-Ognjanovic, V. Thermal treatment impact on the evolution of active phases in layered double hydroxide-based ZnCr photocatalysts: Photodegradation and antibacterial performance. Green Process Synth. 2024, 13, 20230269. [Google Scholar] [CrossRef]
- Hadnadev-Kostić, M.S.; Vulić, T.J.; Zorić, D.B.; Marinković-Nedučin, R.P. The influence of the UV irradiation intensity on photocatalytic activity of ZnAl layered double hydroxides and derived mixed oxides. Chem. Ind. Chem. Eng. Q. 2012, 18, 295–303. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, X.; Wang, X.; Sun, D. Influence of calcination on adsorptive removal of phosphate by ZnAl layered double hydroxides from excess sludge liquor. J Hazard Mater 2010, 177, 516–523. [Google Scholar] [CrossRef]
- Hadnadjev-Kostic, M.; Vulic, T.; Marinkovic-Neducin, R.; Lončarević, D.; Dostanić, J.; Markov, S.; Jovanović, D. Photo-induced properties of photocatalysts: A study on the modified structural, optical and textural properties of TiO2–ZnAl layered double hydroxide-based materials. J. Clean Prod. 2017, 164, 1–18. [Google Scholar] [CrossRef]
- Ahmed, A.A.A.; Talib, Z.A.; Hussein, M.Z.b.; Zakaria, A. Improvement of the crystallinity and photocatalytic property of zinc oxide as calcination product of Zn-Al layered double hydroxide. J. Alloys Compd. 2012, 539, 154–160. [Google Scholar] [CrossRef]
- Barnabas, M.J.; Parambadath, S.; Mathew, A.; Park, S.S.; Vinu, A.; Ha, C.H. Highly efficient and selective adsorption of In3+ on pristine Zn/Al layered double hydroxide (Zn/Al-LDH) from aqueous solutions. J. Solid State Chem. 2016, 233, 133–142. [Google Scholar] [CrossRef]
- Rouahna, N.; Ouakouak, A.; Barkat, D.; Srasra, E. Zn-Al layered double hydroxide: Synthesis, characterization and application for orthophosphates ions adsorption in aqueous medium. Mater. Res. Express 2020, 7, 045502. [Google Scholar] [CrossRef]
- Hadnadjev-Kostic, M.; Karanovic, D.J.; Vulic, T.; Dostanić, J.; Lončarević, D. Photocatalytic properties of ZnFe-mixed oxides synthesized via a simple route for water remediation. Green Process Synth. 2023, 12, 20228153. [Google Scholar] [CrossRef]
- Kubelka, P. New Contributions to the Optics of Intensely Light-Scattering Materials. J. Opt. Soc. Am. 1948, 38, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, X.; Pan, M.; Shi, Y. Nano-Scale Pore Structure and Its Multi-Fractal Characteristics of Tight Sandstone by N2 Adsorption/Desorption Analyses: A Case Study of Shihezi Formation from the Sulige Gas Filed, Ordos Basin, China. Minerals 2020, 10, 377. [Google Scholar] [CrossRef]
- Hadnadjev-Kostic, M.; Vulic, T.; Karanovic, D.J.; Milanovic, M. Advanced dye removal by multifunctional layered double hydroxide based materials: Adsorption and kinetic studies. J. Serb. Chem. Soc. 2022, 87, 1011. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Despotović, V.N.; Abramović, B.F.; Šojić, D.V.; Kler, S.J.; Dalmacija, M.B.; Bjelica, L.J.; Orčić, D.Z. Photocatalytic degradation of herbicide quinmerac in various types of natural water. Water Air Soil Pollut. 2022, 223, 3009–3020. [Google Scholar] [CrossRef]
- Šojić Merkulov, D.; Vlazan, P.; Poienar, M.; Bognár, S.; Ianasi, C.; Sfirloaga, P. Sustainable removal of 17α-ethynylestradiol from aqueous environment using rare earth doped lanthanum manganite nanomaterials. Catal. Today 2023, 424, 113746. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, S.; Wang, K.; Lou, L. Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. J. Photochem. Photobiol. A 2005, 172, 47–54. [Google Scholar] [CrossRef]
- Minero, C.; Mariella, G.; Maurino, V.; Vione, D.; Pelizzetti, E. Photocatalytic transformation of organic compounds in the presence of inorganic ions 2 competitive reactions of phenol and alcohols on a titanium dioxide–fluoride system. Langmuir 2000, 15, 8964–8972. [Google Scholar] [CrossRef]
- Finčur, N.L.; Šćepanović, M.J.; Grujić-Brojčin, M.; Abramović, B.F.; Krstić, J.B.; Kremenović, A.; Srećković, T.; Golubović, A. Adsorption and degradation of some psychiatric drugs by sol-gel synthesized titania-based photocatalysts: Influence of tungsten and sodium content. J. Sol-Gel Sci. Technol. 2019, 90, 510–524. [Google Scholar] [CrossRef]
- Abramović, B.; Despotović, V.; Šojić, D.; Finčur, N. Mechanism of clomazone photocatalytic degradation: Hydroxyl radical, electron and hole scavengers. Reac. Kinet. Mech. Cat. 2015, 115, 67–79. [Google Scholar] [CrossRef]
Sample | ZnAl 100 | ZnCuAl 100 | ZnCr 100 | ZnCrA l100 | ZnAl 500 | ZnCuAl 500 | ZnCr 500 | ZnCrAl 500 |
---|---|---|---|---|---|---|---|---|
D 1 (nm) | 13.04 | 25.36 | 4.21 | 11.28 | 2.6 | 32.6 | 17.7 | 3.4 |
SBET 2 (m2 g−1) | 21.2 | 20.3 | 116.8 | 69.7 | 86 | 32 | 24.4 | 86 |
Vp 3 (cm3 g−1) | 0.46 | 0.31 | 0.19 | 0.14 | 0.53 | 0.39 | 0.23 | 0.10 |
Stplot 4 (m2g−1) | 21.1 | 19.7 | 117.4 | 68.9 | 84.8 | 31.4 | 23.6 | 85.8 |
Eg 5 (eV) | 3.66 | - | 3.66 | 3.55 | 3.76 | - | 3.64 | 3.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Despotović, V.; Hadnađev-Kostić, M.; Vulić, T.; Bognár, S.; Karanović, Đ.; Tot, N.; Šojić Merkulov, D. Utilizing Zn(Cu/Cr)Al-Layered Double Hydroxide-Based Photocatalysts for Effective Photodegradation of Environmental Pollutants. Separations 2024, 11, 308. https://doi.org/10.3390/separations11110308
Despotović V, Hadnađev-Kostić M, Vulić T, Bognár S, Karanović Đ, Tot N, Šojić Merkulov D. Utilizing Zn(Cu/Cr)Al-Layered Double Hydroxide-Based Photocatalysts for Effective Photodegradation of Environmental Pollutants. Separations. 2024; 11(11):308. https://doi.org/10.3390/separations11110308
Chicago/Turabian StyleDespotović, Vesna, Milica Hadnađev-Kostić, Tatjana Vulić, Szabolcs Bognár, Đurđica Karanović, Nataša Tot, and Daniela Šojić Merkulov. 2024. "Utilizing Zn(Cu/Cr)Al-Layered Double Hydroxide-Based Photocatalysts for Effective Photodegradation of Environmental Pollutants" Separations 11, no. 11: 308. https://doi.org/10.3390/separations11110308
APA StyleDespotović, V., Hadnađev-Kostić, M., Vulić, T., Bognár, S., Karanović, Đ., Tot, N., & Šojić Merkulov, D. (2024). Utilizing Zn(Cu/Cr)Al-Layered Double Hydroxide-Based Photocatalysts for Effective Photodegradation of Environmental Pollutants. Separations, 11(11), 308. https://doi.org/10.3390/separations11110308