The Development and Evaluation of Biosorbent Composite Spheres for the Adsorption and Quantification of Copper
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Biocomposite Cellulose Acetate Spheres
2.2. Adsorption Experiments
2.3. Desorption Studies
2.4. Preconcentration Experiments
3. Results
3.1. Characterization of Spheres
3.1.1. Scanning Electron Microscopy
3.1.2. FT-IR
3.2. Copper Adsorption
3.2.1. Influence of Characteristics of Biocomposite Spheres
3.2.2. Influence of pH
3.2.3. Interference Study
3.2.4. Adsorption Isotherm
3.2.5. Kinetic Studies
3.3. Desorption Studies
3.4. Optimization of Preconcentration of Copper
3.5. Analytical Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mokhtar, M.M.; Li, J.; Du, Z.; Cheng, F. Review of the Chemical Separation. IJAEMS 2020, 6, 438–444. [Google Scholar] [CrossRef]
- Türker, A.R. Separation, preconcentration and speciation of metal ions by solid phase extraction. Sep. Purif. Rev. 2012, 41, 169–206. [Google Scholar] [CrossRef]
- Deng, D.; Zheng, C.; Hou, X.; Wu, L. Application of preconcentration and separation techniques in atomic fluorescence spectrometry. Appl. Spectrosc. Rev. 2015, 50, 678–705. [Google Scholar] [CrossRef]
- Ozdemir, S.; Kılınç, E.; Fatih, S. A Novel Biosorbent for Preconcentrations of Co(II) and Hg(II) in Real Samples. Sci. Rep. 2020, 10, 455. [Google Scholar] [CrossRef] [PubMed]
- Vishnu, D.; Dhandapani, B.; Kannappan Panchamoorthy, G.; Vo, D.V.N.; Ramakrishnan, S.R. Comparison of surface-engineered superparamagnetic nanosorbents with low-cost adsorbents of cellulose, zeolites and biochar for the removal of organic and inorganic pollutants: A review. Environ. Chem. Lett. 2021, 19, 3181–3208. [Google Scholar] [CrossRef]
- Beni, A.A.; Esmaeili, A. Biosorption, an efficient method for removing heavy metals from industrial effluents: A review. Environ. Technol. Innov. 2020, 17, 100503. [Google Scholar] [CrossRef]
- Pandey, A.; Bera, D.; Shukla, A.; Ray, L. Studies on Cr(VI), Pb(II) and Cu(II) adsorption–desorption using calcium alginate as biopolymer. Chem. Speciat. Bioavailab. 2015, 19, 17–24. [Google Scholar] [CrossRef]
- Gupta, V.K.; Nayak, A.; Agarwal, S. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. 2015, 20, 1–18. [Google Scholar] [CrossRef]
- Dotto, G.L.; McKay, G. Current scenario and challenges in adsorption for water treatment. J. Environ. Chem. Eng. 2020, 8, 103988. [Google Scholar] [CrossRef]
- Dias, F.D.S.; Meira, L.A.; Carneiro, C.N.; dos Santos, L.F.; Guimarães, L.B.; Coelho, N.M.; Coelho, L.M.; Alves, V.N. Lignocellulosic materials as adsorbents in solid phase extraction for trace elements preconcentration. Trends Analyt. Chem. 2023, 158, 116891. [Google Scholar] [CrossRef]
- Molaudzi, N.R.; Ambushe, A.A. Sugarcane bagasse and orange peels as low-cost biosorbents for the removal of lead ions from contaminated water samples. Water 2022, 14, 3395. [Google Scholar] [CrossRef]
- Ribeiro, G.C.; Coelho, L.M.; Coelho, N.M.M. Determination of nickel in alcoholic beverages by FAAS after online preconcentration using mandarin peel (Citrus reticulata) as biosorbent. J. Braz. Chem. Soc. 2013, 24, 1072–1078. [Google Scholar] [CrossRef]
- Yadav, N.; Hakkarainen, M. Degradable or not? Cellulose acetate as a model for complicated interplay between structure, environment and degradation. Chemosphere 2021, 265, 128731. [Google Scholar]
- Nakakubo, K.; Nishimura, T.; Biswas, F.B.; Endo, M.; Wong, K.H.; Mashio, A.S.; Taniguchi, T.; Nishimura, T.; Maeda, K.; Hasegawa, H. Speciation analysis of inorganic selenium in wastewater using a highly selective cellulose-based adsorbent via liquid electrode plasma optical emission spectrometry. J. Hazard. Mater. 2022, 424, 127250. [Google Scholar] [CrossRef]
- Fouda-Mbanga, B.G.; Prabakaran, E.; Pillay, K. Carbohydrate biopolymers, lignin based adsorbents for removal of heavy metals (Cd2+, Pb2+, Zn2+) from wastewater, regeneration and reuse for spent adsorbents including latent fingerprint detection: A review. Biotechnol. Rep. 2021, 30, e00609. [Google Scholar] [CrossRef]
- Putri, K.N.A.; Keereerak, A.; Chinpa, W. Novel cellulose-based biosorbent from lemongrass leaf combined with cellulose acetate for adsorption of crystal violet. Int. J. Biol. Macromol. 2020, 156, 762–772. [Google Scholar] [CrossRef]
- Eze, E.; Omer, A.M.; Hassanin, A.H.; Eltaweil, A.S.; El-Khouly, M.E. Efficient removal of noxious methylene dye by low-cost and reusable composite beads based on cellulose acetate/banana pseudo-stem fiber. Biomass Conv. Bioref. 2023, 14, 24225–24239. [Google Scholar] [CrossRef]
- Aldalbahi, A.; El-Naggar, M.; Khattab, T.; Abdelrahman, M.; Rahaman, M.; Alrehaili, A.; El-Newehy, M. Development of green and sustainable cellulose acetate/graphene oxide nanocomposite films as efficient adsorbents for wastewater treatment. Polymers 2020, 12, 2501. [Google Scholar] [CrossRef]
- Wang, P.; Yuan, Y.; Xu, K.; Zhong, H.; Yang, Y.; Jin, S.; Yang, K.; Qi, X. Biological applications of copper-containing materials. Bioact. Mater. 2021, 6, 916–927. [Google Scholar] [CrossRef]
- Sailer, J.; Nagel, J.; Akdogan, B.; Jauch, A.T.; Engler, J.; Knolle, P.A.; Zischka, H. Deadly excess copper. Redox Biol. 2024, 75, 103256. [Google Scholar] [CrossRef]
- Oliveri, V. Biomedical applications of copper ionophores. Coord. Chem. Rev. 2020, 422, 213474. [Google Scholar] [CrossRef]
- Szymański, P.; Frączek, T.; Markowicz, M.; Mikiciuk-Olasik, E. Development of copper based drugs, radiopharmaceuticals and medical materials. Biometals 2012, 25, 1089–1112. [Google Scholar] [CrossRef] [PubMed]
- Eniayewu, O.I.; Bamidele, O.D.; Ogunremi, B.I.; Afosi, A.B.; Ibrahim, S.A.; Abdulahi, S.T.; Njinga, N.S. Heavy metal analysis of polyherbal formulations marketed in Ilorin. J. Pharm. Res. Dev. Pract. 2020, 4, 20–29. [Google Scholar]
- Han, Q.; Yang, X.; Huo, Y.; Lu, J.; Liu, Y. Determination of Ultra-Trace Amounts of Copper in Environmental Water Samples by Dispersive Liquid-Liquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry. Separations 2023, 10, 93. [Google Scholar] [CrossRef]
- Wartelle, L.H.; Marshall, W.E. Citric acid modified agricultural by-products as copper ion adsorbents. Adv. Environ. Res. 2000, 4, 1–7. [Google Scholar] [CrossRef]
- Gong, X.C.; Luo, G.S.; Yang, W.W.; Wu, F.Y. Separation of organic acids by newly developed polysulfone microcapsules containing trioctylamine. Sep. Purif. Technol. 2006, 48, 235–243. [Google Scholar] [CrossRef]
- Mbarki, F.; Selmi, T.; Kesraoui, A.; Seffen, M. Low-cost activated carbon preparation from Corn stigmata fibers chemically activated using H3PO4, ZnCl2 and KOH: Study of methylene blue adsorption, stochastic isotherm and fractal kinetic. Ind. Crops Prod. 2022, 178, 114546. [Google Scholar] [CrossRef]
- Ragadhita, R.; Nandiyanto, A.B.D. How to calculate adsorption isotherms of particles using two-parameter monolayer adsorption models and equations. Indones. J. Sci. Technol. 2021, 6, 205–234. [Google Scholar] [CrossRef]
- Kristianto, H.; Daulay, N.; Arie, A.A. Adsorption of Ni(II) Ion onto Calcined Eggshells:A Study of Equilibrium Adsorption Isotherm. Indones. J. Chem. 2019, 19, 143–150. [Google Scholar]
- Rajahmundry, G.K.; Garlapati, C.; Kumar, P.S.; Alwi, R.S.; Vo, D.V.N. Statistical analysis of adsorption isotherm models and its appropriate selection. Chemosphere 2021, 276, 130176. [Google Scholar] [CrossRef]
- Gapusan, R.B.; Balela, M.D.L. Adsorption of anionic methyl orange dye and lead (II) heavy metal ion by polyaniline-kapok fiber nanocomposite. Mater. Chem. Phys. 2020, 243, 122682. [Google Scholar] [CrossRef]
- Kaur, M.; Kumari, S.; Sharma, P. Removal of Pb (II) from aqueous solution using nanoadsorbent of Oryza sativa husk: Isotherm, kinetic and thermodynamic studies. Biotechnol. Rep. 2020, 25, e00410. [Google Scholar] [CrossRef]
- Moussout, H.; Ahlafi, H.; Aazza, M.; Maghat, H. Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models. KIJOMS 2018, 4, 244–254. [Google Scholar] [CrossRef]
- Dias, R.A.; Medeiros, V.D.N.; Silva, B.I.A.; Araújo, E.M.; Lira, H.D.L. Study of the influence of viscosity on the morphology of polyethersulfone hollow fiber membranes/additives. Mater. Res. 2019, 22, e20180913. [Google Scholar] [CrossRef]
- Lalia, B.S.; Kochkodan, V.; Hashaikeh, R.; Hilal, N. A review on membrane fabrication: Structure, properties and performance relationship. Desalination 2013, 326, 77–95. [Google Scholar] [CrossRef]
- Hung, W.L.; Wang, D.M.; Lai, J.Y.; Chou, S.C. On the initiation of macrovoids in polymeric membranes—Effect of polymer chain entanglement. J. Membr. Sci. 2016, 505, 70–81. [Google Scholar] [CrossRef]
- Aysu, T.; Durak, H. Assessment of avocado seeds (Persea americana) to produce bio-oil through supercritical liquefaction. Biofuels Bioprod. Biorefin. 2015, 9, 231–257. [Google Scholar] [CrossRef]
- Ibrahim, F.M.; Najeeb, D.A.; ThamerSadeq, H. Green preparation of Cu nanoparticles of the avocado seed extract as an adsorbent surface. Mater. Sci. Energy Technol. 2023, 6, 130–136. [Google Scholar] [CrossRef]
- Díaz-Muñoz, L.L.; Bonilla-Petriciolet, A.; Reynel-Ávila, H.E.; Mendoza-Castillo, D.I. Sorption of heavy metal ions from aqueous solution using acid-treated avocado kernel seeds and its FTIR spectroscopy characterization. J. Mol. Liq. 2016, 215, 555–564. [Google Scholar] [CrossRef]
- Demirdogen, R.E.; Kilic, D.; Emen, F.M.; Aşkar, Ş.; Karaçolak, A.İ.; Yesilkaynak, T.; Ihsan, A. Novel antibacterial cellulose acetate fibers modified with 2-fluoropyridine complexes. J. Mol. Struct. 2020, 1204, 127537. [Google Scholar] [CrossRef]
- Svarovskaya, N.V.; Bakina, O.V.; Glazkova, E.A.; Fomenko, A.N.; Lerner, M.I. Glass and cellulose acetate fibers-supported boehmite nanosheets for bacteria adsorption. Prog. Nat. Sci: Mater. Int. 2017, 27, 268–274. [Google Scholar] [CrossRef]
- Wanja, N.E.; Murungi, J.A.N.E.; Wanjau, R.U.T.H.; Hassanali, A.H.M.E.D. Application of chemically modified avocado seed for removal of Copper (II), Lead (II), and Cadmium (II) ions from aqueous solutions. IJREAS 2015, 6, 1–15. [Google Scholar]
- Liu, X.; Jiang, T.; Xu, B.; Zhang, Y.; Li, Q.; Yang, Y.; He, Y. Thiosulphate leaching of gold in the Cu–NH3–S2O32−–H2O system: An updated thermodynamic analysis using predominance area and species distribution diagrams. Miner. Eng. 2020, 151, 106336. [Google Scholar] [CrossRef]
- Azoulay, K.; Bencheikh, I.; Moufti, A.; Dahchour, A.; Mabrouki, J.; Hajjaji, S.E. Comparative study between static and dynamic adsorption efficiency of dyes by the mixture of palm waste using the central composite design. Chem. Data Collect. 2020, 27, 100385. [Google Scholar] [CrossRef]
- Bernal, V.; Giraldo, L.; Moreno-Piraján, J.C. Understanding the solid-liquid equilibria between paracetamol and activated carbon: Thermodynamic approach of the interactions adsorbent-adsorbate using equilibrium, kinetic and calorimetry data. J. Hazard. Mater. 2021, 419, 126432. [Google Scholar] [CrossRef] [PubMed]
- Puccia, V.; Avena, M.J. On the use of the Dubinin-Radushkevich equation to distinguish between physical and chemical adsorption at the solid-water interface. Colloid. Interface Sci. Commun. 2021, 41, 100376. [Google Scholar] [CrossRef]
- Meringer, A.; Liffourrena, A.S.; Heredia, R.M.; Lucchesi, G.I.; Boeris, P.S. Removal of copper and/or zinc ions from synthetic solutions by immobilized, non-viable bacterial biomass: Batch and fixed-bed column lab-scale study. J. Biotechnol. 2021, 328, 87–94. [Google Scholar] [CrossRef]
- Kamarudzaman, A.N.; Adan, S.N.A.C.; Hassan, Z.; Wahab, M.A.; Makhtar, S.M.Z.; Seman, N.A.A.; Jalil, M.F.A.; Handayani, D.; Syafiuddin, A. Biosorption of Copper(II) and Iron(II) using Spent Mushroom Compost as Biosorbent. Biointerface Res. Appl. Chem. 2022, 12, 7775–7786. [Google Scholar]
- Khamwichit, A.; Dechapanya, W.; Dechapanya, W. Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell. Heliyon 2022, 8, e09610. [Google Scholar] [CrossRef]
- Amar, M.B.; Walha, K.; Salvadó, V. Evaluation of Olive Stones for Cd(II), Cu(II), Pb(II) and Cr(VI) Biosorption from Aqueous Solution: Equilibrium and Kinetics. Int. J. Environ. Res. 2020, 14, 193–204. [Google Scholar] [CrossRef]
- Lee, J.H.; Suh, D.H. Entropy, enthalpy, and gibbs free energy variations of 133Cs via CO2- activated carbon filter and ferric ferrocyanide hybrid composites. Nucl. Eng. Des. 2021, 53, 3711–3716. [Google Scholar] [CrossRef]
- Harrache, Z.; Abbas, M.; Aksil, T.; Trari, M. Thermodynamic and kinetics studies on adsorption of Indigo Carmine from aqueous solution by activated carbon. Microchem. J. 2019, 144, 180–189. [Google Scholar] [CrossRef]
- Munagapati, V.S.; Wen, H.Y.; Vijaya, Y.; Wen, J.C.; Wen, J.H.; Tian, Z.; Reddy, G.M.; Garcia, J.R. Removal of anionic (Acid Yellow 17 and Amaranth) dyes using aminated avocado (Persea americana) seed powder: Adsorption/desorption, kinetics, isotherms, thermodynamics, and recycling studies. Int. J. Phytoremediation 2021, 23, 911–923. [Google Scholar] [CrossRef] [PubMed]
- Tefera, N.; Mulualem, Y.; Fito, J. Adsorption of Fluoride from Aqueous Solution and Groundwater onto Activated Carbon of Avocado Seeds. Water Conserve Sci. Eng. 2020, 5, 187–197. [Google Scholar] [CrossRef]
- Abdolmohammad-Zadeh, H.; Ayazi, Z.; Naghdi, Z. Nickel oxide/chitosan nano-composite as a magnetic adsorbent for pre-concentration of Zn (II) ions. J. Magn. Magn. Mater. 2019, 488, 165311. [Google Scholar] [CrossRef]
- Hossain, M.A.; Ngo, H.H.; Guo, W.S.; Nguyen, T.V. Removal of Copper from Water by Adsorption onto Banana Peel as Bioadsorbent. Int. J. Geomate 2012, 2, 227–234. [Google Scholar] [CrossRef]
- Liu, K.; Gao, X.; Li, L.; Chen, C.T.A.; Xing, Q. Determination of ultra-trace Pt, Pd and Rh in seawater using an off-line pre-concentration method and inductively coupled plasma mass spectrometry. Chemosphere 2018, 212, 429–437. [Google Scholar] [CrossRef]
- Krupčík, J.; Májek, P.; Gorovenko, R.; Blaško, J.; Kubinec, R.; Sandra, P. Considerations on the determination of the limit of detection and the limit of quantification in one-dimensional and comprehensive two-dimensional gas chromatography. J. Chromatogr. A 2015, 1396, 117–130. [Google Scholar] [CrossRef]
Isotherm | Parameters 1 |
---|---|
Langmuir | qmax 0.121 mg g−1 |
KL 0.184 L mg−1 | |
R2 0.99 | |
SSE 9.1 × 10−3 | |
Freundlich | KF 0.017 L g−1 |
no 1.636 | |
R2 0.91 | |
SSE 2.3 × 10−3 | |
Langmuir–Freundlich | qmax 0.201 mg·g−1 |
KLF 0.041 | |
MLF 0.597 | |
R2 0.99 | |
SSE 3.2 × 10−4 | |
Dubinin–Radushkevich | β 0.008 mol J−2 |
E 7.54 KJ mol−1 | |
R2 0.99 |
Material | Maximum Capacity (mg·g−1) | Reference |
---|---|---|
EAc/HAA | 0.121 | This work |
Pseudomonas putida biomass trapped in agar beads | 0.255 | [47] |
Spent Mushroom Compost | 0.340 | [48] |
Venus shell | 0.446 | [49] |
Olive stones | 0.557 | [50] |
Temperature (K) | ∆G0 (KJ mol−1) | ∆H0 (KJ mol−1) | ∆S0 (KJ mol−1K−1) |
---|---|---|---|
291 | −22.66 | ||
303 | −25.13 | 32.23 | 0.19 |
308 | −25.80 |
Model | Estimated Kinetic Parameters 1 | |
---|---|---|
Pseudo-first-order | qe (mg·g−1) | 0.21 |
K1 (min−1) | 9.44 × 10−3 | |
R2 | 0.91 | |
Pseudo-second-order | qe (mg·g−1) | 0.03 |
K2 (g·mg−1·min−1) | 2.03 | |
R2 | 0.96 |
Concentration of HNO3 (mol L−1) | Desorption Percentage (%) |
---|---|
0.10 | 97.31 (2.84) |
0.25 | 98.42 (1.85) |
0.50 | 96.53 (4.99) |
1.00 | 98.00 (3.93) |
Experiment | M | SV | DV | AT | DT | EF |
---|---|---|---|---|---|---|
1 | +1 | +1 | −1 | −1 | +1 | 2.90 |
2 | +1 | −1 | +1 | −1 | −1 | 1.20 |
3 | −1 | +1 | −1 | +1 | +1 | 0.84 |
4 | −1 | +1 | −1 | −1 | −1 | 0.81 |
5 | −1 | −1 | +1 | +1 | +1 | 0.32 |
6 | +1 | −1 | −1 | +1 | +1 | 2.29 |
7 | −1 | −1 | +1 | −1 | +1 | 0.19 |
8 | −1 | +1 | +1 | +1 | −1 | 0.36 |
9 | +1 | −1 | −1 | +1 | −1 | 2.15 |
10 | +1 | +1 | +1 | −1 | +1 | 1.91 |
11 | −1 | −1 | −1 | −1 | −1 | 0.46 |
12 | +1 | +1 | +1 | +1 | −1 | 2.29 |
Parameters | Value |
---|---|
Slope (uAL mg−1) | 2.59 ± 0.14 |
Intercept (uA) | 0.002 ± 0.008 |
Correlation coefficient (r) | 0.998 |
Limit of detection (mg L−1) | 0.007 |
Limit of quantification (mg L−1) | 0.022 |
Intra-day repeatability | |
0.025 mg L−1 | 5.64% |
0.050 mg L−1 | 5.42% |
0.100 mg L−1 | 6.99% |
Repeatability inter-day | |
0.025 mg L−1 | 3.54% |
0.050 mg L−1 | 7.91% |
0.100 mg L−1 | 4.54% |
Sample | Concentration (µg L−1) | tcalculated | |
---|---|---|---|
EAc/HAA | GFAAS | ||
1 | 132.93 ± 9.79 | 121.72 | 1.98 |
2 | 168.79 ± 2.80 | 162.48 | 3.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Silva, I.; Páez-Hernández, M.E.; Martínez-Flores, F.J.; Tavizón-Pozos, J.A.; Romero, G.A.Á. The Development and Evaluation of Biosorbent Composite Spheres for the Adsorption and Quantification of Copper. Separations 2024, 11, 307. https://doi.org/10.3390/separations11110307
Pérez-Silva I, Páez-Hernández ME, Martínez-Flores FJ, Tavizón-Pozos JA, Romero GAÁ. The Development and Evaluation of Biosorbent Composite Spheres for the Adsorption and Quantification of Copper. Separations. 2024; 11(11):307. https://doi.org/10.3390/separations11110307
Chicago/Turabian StylePérez-Silva, Irma, María Elena Páez-Hernández, Francisco Javier Martínez-Flores, Jesús Andrés Tavizón-Pozos, and Giaan Arturo Álvarez Romero. 2024. "The Development and Evaluation of Biosorbent Composite Spheres for the Adsorption and Quantification of Copper" Separations 11, no. 11: 307. https://doi.org/10.3390/separations11110307
APA StylePérez-Silva, I., Páez-Hernández, M. E., Martínez-Flores, F. J., Tavizón-Pozos, J. A., & Romero, G. A. Á. (2024). The Development and Evaluation of Biosorbent Composite Spheres for the Adsorption and Quantification of Copper. Separations, 11(11), 307. https://doi.org/10.3390/separations11110307