Experimental Analysis of the Supercritical CO2-Based Circulation Type for the Remediation of Kilogram-Scale Soil Samples from Metal Ions
Abstract
:1. Introduction
2. Experimental System
2.1. System Construction
2.2. Soil Samples and Chemical Agents
2.3. Flow System
2.4. System Control and Manipulation
2.5. System Operation
2.5.1. Measurement of Soil Sample Inorganic Contamination Before and After Remediation
2.5.2. Preparation of Soil Samples
2.5.3. Procedures of Supercritical Remediation
2.6. Data Acquisition
2.7. Uncertainty Analysis
2.8. Parameters and Conditions of the Experiment
3. Results and Discussion
3.1. Soil Sample Parameters
3.2. Chromium (Cr) Extraction Efficiency Analysis
3.2.1. Effect of Pressure
3.2.2. Effect of Temperature
3.2.3. Effect of Time
3.2.4. Discussion
3.3. Arsenic (As) Extraction Efficiency Analysis
3.3.1. Effect of Pressure
3.3.2. Effect of Temperature
3.3.3. Effect of Time
3.3.4. Discussion
3.4. Further Comparisons with Literature Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Hasanov, J.; Chen, J.X.; Feng, Y.C.; Kand, Y.; Komiya, A. Supercritical fluid remediation for soil contaminants: Mechanisms, parameter optimization and pilot systems. J. Supercrit. Fluids 2022, 189, 105718. [Google Scholar] [CrossRef]
- Chen, L. Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems; IGI Global: Hershey, PA, USA, 2021. [Google Scholar] [CrossRef]
- Chen, L. Microchannel Flow Dynamics and Heat Transfer of Near-Critical Fluid; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Yudaev, P.A.; Kolpinskaya, N.A.; Chistyakov, E.M. Organophosphorous extractants for metals. Hydrometallurgy 2021, 201, 105558. [Google Scholar] [CrossRef]
- Yudaev, P.; Butorova, I.; Stepanov, G.; Chistyakov, E. Extraction of Palladium(II) with a Magnetic Sorbent Based on Polyvinyl Alcohol Gel, Metallic Iron, and an Environmentally Friendly Polydentate Phosphazene-Containing Extractant. Gels 2022, 8, 492. [Google Scholar] [CrossRef] [PubMed]
- Kayathi, A.; Chakrabarti, P.P.; Bonfim-Rocha, L.; Cardozo-Filho, L.; Jegatheesan, V. Selective extraction of polar lipids of mango kernel using Supercritical Carbon dioxide (SC–CO2) extraction: Process optimization of extract yield/phosphorous content and economic evaluation. Chemosphere 2020, 260, 127639. [Google Scholar] [CrossRef]
- Lin, F.Y.; Liu, D.G.; Maiti Das, S.; Prempeh, N.; Hua, Y.; Lu, J.G. Recent Progress in Heavy Metal Extraction by Supercritical CO2 Fluids. Ind. Eng. Chem. Res. 2014, 53, 1866–1877. [Google Scholar] [CrossRef]
- Yuan, Q.X.; Zhang, Y.S.; Wang, T.; Wang, J.W. Characterization of heavy metals in fly ash stabilized by carbonation with supercritical CO2 coupling mechanical force. J. CO2 Util. 2023, 67, 102308. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef]
- Sunarso, J.; Ismadji, S. Decontamination of hazardous substances from solid matrices and liquids using supercritical fluids extraction: A review. J. Hazard. Mater. 2009, 161, 1–20. [Google Scholar] [CrossRef]
- Chrastil, J. Solubility of solids and liquids in supercritical gases. J. Phys. Chem. 1982, 86, 3016–3021. [Google Scholar] [CrossRef]
- Bartle, K.D.; Clifford, A.A.; Jafar, S.A.; Shilstone, G.F. Solubilities of Solids and Liquids of Low Volatility in Supercritical Carbon Dioxide. J. Phys. Chem. Ref. Data 1991, 20, 713–756. [Google Scholar] [CrossRef]
- Ziger, D.H.; Eckert, C.A. Correlation and prediction of solid-supercritical fluid phase equilibriums. Ind. Eng. Chem. Process Des. Dev. 1983, 22, 582–588. [Google Scholar] [CrossRef]
- Zhong, M.H.; Han, B.X.; Ke, J.; Yan, H.K.; Peng, D.Y. A model for correlating the solubility of solids in supercritical CO2. Fluid Phase Equilibria 1998, 146, 93–102. [Google Scholar] [CrossRef]
- Saldaña, M.D.A.; Nagpal, V.; Guigard, S.E. Remediation of Contaminated Soils using Supercritical Fluid Extraction: A Review (1994–2004). Environ. Technol. 2005, 26, 1013–1032. [Google Scholar] [CrossRef]
- Leybros, A.; Grandjean, A.; Segond, N.; Messalier, M.; Boutin, O. Cesium removal from contaminated sand by supercritical CO2 extraction. J. Environ. Chem. Eng. 2016, 4, 1076–1080. [Google Scholar] [CrossRef]
- Jahongir, H.; Miansong, Z.; Amankeldi, I.; Yu, Z.; Changheng, L. The influence of particle size on supercritical extraction of dog rose (Rosa canina) seed oil. J. King Saud Univ.-Eng. Sci. 2019, 31, 140–143. [Google Scholar] [CrossRef]
- Hamid, Y.; Tang, L.; Hussain, B.; Usman, M.; Lin, Q.; Rashid, M.S.; He, Z.L.; Yang, X.E. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review. Sci. Total Environ. 2020, 707, 136121. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil Contamination in China: Current Status and Mitigation Strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef]
- Kariyawasam, T.; Doran, G.S.; Howitt, J.A.; Prenzler, P.D. Polycyclic aromatic hydrocarbon contamination in soils and sediments: Sustainable approaches for extraction and remediation. Chemosphere 2022, 291, 132981. [Google Scholar] [CrossRef]
- Sharif, K.M.; Rahman, M.M.; Azmir, J.; Mohamed, A.; Jahurul, M.H.A.; Sahena, F.; Zaidul, I.S.M. Experimental design of supercritical fluid extraction—A review. J. Food Eng. 2014, 124, 105–116. [Google Scholar] [CrossRef]
- Alassali, A.; Aboud, N.; Kuchta, K.; Jaeger, P.; Zeinolevadi, A. Assessment of Supercritical CO2 Extraction as a Method for Plastic Waste Decontamination. Polymers 2020, 12, 1347. [Google Scholar] [CrossRef]
- Song, B.; Zeng, G.M.; Gong, J.L.; Liang, J.; Xu, P.; Liu, Z.F.; Zhang, Y.; Zhang, C.; Chen, M.; Liu, Y.; et al. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ. Int. 2017, 105, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.C.; Zhang, F.S. Enhanced dehalogenation and coupled recovery of complex electronic display housing plastics by sub/supercritical CO2. J. Hazard. Mater. 2020, 382, 121140. [Google Scholar] [CrossRef] [PubMed]
- Hollender, J.; Shneine, J.; Dott, W.; Heinzel, M.; Hagemann, H.W.; Götz, G.K.E. Extraction of polycyclic aromatic hydrocarbons from polluted soils with binary and ternary supercritical phases. J. Chromatogr. A 1997, 776, 233–243. [Google Scholar] [CrossRef]
- Gong, Z.Q.; Gong, B.M.; Alef, K.; Li, P.J. Influence of soil moisture on sunflower oil extraction of polycyclic aromatic hydrocarbons from a manufactured gas plant soil. Sci. Total Environ. 2005, 343, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Fayaz, S.M.; Abdoli, M.A.; Baghdadi, M.; Karbasi, A. Ag removal from e-waste using supercritical fluid: Improving efficiency and selectivity. Int. J. Environ. Stud. 2021, 78, 459–473. [Google Scholar] [CrossRef]
- US EPA. Protecting and Restoring Land: Making a Visible Difference in Communities: OSWER FY13 and of Year Accomplishments Report; United States Environmental Protection Agency (EPA): Washington, DC, USA, 2013.
- Abou, E.T.; Sofan, M.; Elsisi, H.; Kosbar, T.; Negm, E.; Hirogaki, K.; Tabata, I.; Hori, T. Optimization of an eco-friendly dyeing process in both laboratory scale and pilot scale supercritical carbon dioxide unit for polypropylene fabrics with special new disperse dyes. J. CO2 Util. 2019, 33, 365–371. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Bae, S.J.; Kim, M.S.; Cho, S.K.; Baik, S.J.; Lee, J.I.; Cha, J.E. Review of supercritical CO2 power cycle technology and current status of research and development. Nucl. Eng. Technol. 2015, 47, 647–661. [Google Scholar] [CrossRef]
- Kersch, C.; van Roosmanlen, M.J.E.; Woerlee, G.F.; Witkamp, G.J. Extraction of Heavy Metals from Fly Ash and Sand with Ligands and Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 2000, 39, 4670–4672. [Google Scholar] [CrossRef]
- Kersch, C.; Kraan, M.; Woerlee, G.F.; Wirkamp, G.J. Municipal waste incinerator fly ash: Supercritical fluid extraction of metals. J. Chem. Technol. Biotechnol. 2002, 77, 206–259. [Google Scholar] [CrossRef]
- Wang, J.S.; Chiu, K.H. Mass Balance of Metal Species in Supercritical Fluid Extraction Using Sodium Diethyldithiocarbamate and Dibutylammonium Dibutyldithiocarbamate. Anal. Sci. 2006, 77, 363–369. [Google Scholar] [CrossRef]
- Liu, J.C.; Wang, W.; Wang, Z.W.; Li, G.Z.; Han, B.X. Complexation-supercritical carbon dioxide extraction of copper ions from solid matrices with thenoyltrifluoroacetone and modifiers. Sep. Sci. Technol. 2002, 37, 2691–2700. [Google Scholar] [CrossRef]
- Yabalak, E.; Gizir, M. Subcritical and supercritical fluid extraction of heavy metals from sand and sewage sludge. J. Serbian Chem. Soc. 2013, 78, 1013–1022. [Google Scholar] [CrossRef]
- Kersch, C.; Peretó Ortiz, S.; Woerlee, G.F.; Witkamp, G.J. Leachability of metals from fly ash: Leaching tests before and after extraction with supercritical CO2 and extractants. Hydrometallurgy 2004, 72, 119–127. [Google Scholar] [CrossRef]
- Mei, D.Q.; Fang, Y.; Zhang, Z.J.; Guo, D.M.; Chen, Z.Y.; Sun, C. Analysis of surface tension for nano-fuels containing disparate types of suspended nanoparticles. Powder Technol. 2021, 388, 526–536. [Google Scholar] [CrossRef]
- Arumugham, T.; KRambabu Hasan, S.W.; Show, P.L.; Rinklebe, J.; Banat, F. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications—A review. Chemosphere 2021, 27, 129525. [Google Scholar] [CrossRef]
- Zuo, L.; Wang, J.F.; Mei, D.Q.; Adu-Mensah, D.; Gao, Y.P. Ultrasonic-assisted catalytic transfer hydrogenation of cottonseed biodiesel using Raney-Ni catalyst in aqueous environment. Chem. Eng. J. 2022, 437, 135193. [Google Scholar] [CrossRef]
- Yang, D.; Chen, L.; Chen, J.X.; Feng, Y.C. High-heat flux flow and heat transfer transitions in a supercritical loop: Numerical verification and correlation. Int. J. Energy Res. 2022, 46, 16375–16393. [Google Scholar] [CrossRef]
- Jiang, Y.T.; Zhang, H.Y.; Hong, L.F.; Shao, J.J.; Zhang, B.W.; Yu, J.J.; Chu, S. An Integrated Plasma–Photocatalytic System for Upcycling of Polyolefin Plastics. ChemSusChem 2023, 16, e202300106. [Google Scholar] [CrossRef]
- Yin, T.; Chen, H.; Reinhard, M.; Yi, X.; He, Y.; Gin, K.Y.H. Perfluoroalkyl and polyfluoroalkyl substances removal in a full-scale tropical constructed wetland system treating landfill leachate. Water Res. 2017, 125, 418–426. [Google Scholar] [CrossRef]
Items | Parameters |
---|---|
Rated Flow Rate | 0.055 m3/h |
Exhaust Pressure | 6.0–50.0 MPa |
Intake pressure | 4.0–6.0 MPa |
Itinerary | 32 mm |
Items | Parameters |
---|---|
Cooling capacity | 10 kW |
Input power | 3200 W |
Items | Parameters |
---|---|
Extraction vessel volume | 5 L |
Extraction vessel pressure-bearing | 50 MPa |
Separation vessel 1 volume | 2 L |
Separation vessel 1 pressure-bearing | 30 MPa |
Separation vessel 2 volume | 1 L |
Separation vessel 2 pressure-bearing | 30 MPa |
No. | Extraction Time (min) | Pressure (MPa) | Temperature (°C) | ||||
---|---|---|---|---|---|---|---|
Reaction Vessel | Separation Vessel 1 | Separation Vessel 2 | Reaction Vessel | Separation Vessel 1 | Separation Vessel 2 | ||
1 | 20 | 20 | 8 | 4.5 | 35 | 40 | 35 |
2 | 20 | 20 | 8 | 4.5 | 55 | 40 | 35 |
3 | 20 | 20 | 8 | 4.5 | 75 | 40 | 35 |
4 | 20 | 25 | 8 | 4.5 | 35 | 40 | 35 |
5 | 20 | 25 | 8 | 4.5 | 55 | 40 | 35 |
6 | 20 | 25 | 8 | 4.5 | 75 | 40 | 35 |
7 | 20 | 30 | 8 | 4.5 | 35 | 40 | 35 |
8 | 20 | 30 | 8 | 4.5 | 55 | 40 | 35 |
9 | 20 | 30 | 8 | 4.5 | 75 | 40 | 35 |
10 | 20 | 35 | 8 | 4.5 | 35 | 40 | 35 |
11 | 20 | 35 | 8 | 4.5 | 55 | 40 | 35 |
12 | 20 | 35 | 8 | 4.5 | 75 | 40 | 35 |
13 | 30 | 20 | 8 | 4.5 | 35 | 40 | 35 |
14 | 30 | 20 | 8 | 4.5 | 55 | 40 | 35 |
15 | 30 | 20 | 8 | 4.5 | 75 | 40 | 35 |
16 | 30 | 25 | 8 | 4.5 | 35 | 40 | 35 |
17 | 30 | 25 | 8 | 4.5 | 55 | 40 | 35 |
18 | 30 | 25 | 8 | 4.5 | 75 | 40 | 35 |
19 | 30 | 30 | 8 | 4.5 | 35 | 40 | 35 |
20 | 30 | 30 | 8 | 4.5 | 55 | 40 | 35 |
21 | 30 | 30 | 8 | 4.5 | 75 | 40 | 35 |
22 | 30 | 35 | 8 | 4.5 | 35 | 40 | 35 |
23 | 30 | 35 | 8 | 4.5 | 55 | 40 | 35 |
24 | 30 | 35 | 8 | 4.5 | 75 | 40 | 35 |
25 | 40 | 20 | 8 | 4.5 | 35 | 40 | 35 |
26 | 40 | 20 | 8 | 4.5 | 55 | 40 | 35 |
27 | 40 | 20 | 8 | 4.5 | 75 | 40 | 35 |
28 | 40 | 25 | 8 | 4.5 | 35 | 40 | 35 |
29 | 40 | 25 | 8 | 4.5 | 55 | 40 | 35 |
30 | 40 | 25 | 8 | 4.5 | 75 | 40 | 35 |
31 | 40 | 30 | 8 | 4.5 | 35 | 40 | 35 |
32 | 40 | 30 | 8 | 4.5 | 55 | 40 | 35 |
33 | 40 | 30 | 8 | 4.5 | 75 | 40 | 35 |
34 | 40 | 35 | 8 | 4.5 | 35 | 40 | 35 |
35 | 40 | 35 | 8 | 4.5 | 55 | 40 | 35 |
36 | 40 | 35 | 8 | 4.5 | 75 | 40 | 35 |
37 | 60 | 20 | 8 | 4.5 | 35 | 40 | 35 |
38 | 60 | 20 | 8 | 4.5 | 55 | 40 | 35 |
39 | 60 | 20 | 8 | 4.5 | 75 | 40 | 35 |
40 | 60 | 25 | 8 | 4.5 | 35 | 40 | 35 |
41 | 60 | 25 | 8 | 4.5 | 55 | 40 | 35 |
42 | 60 | 25 | 8 | 4.5 | 75 | 40 | 35 |
43 | 60 | 30 | 8 | 4.5 | 35 | 40 | 35 |
44 | 60 | 30 | 8 | 4.5 | 55 | 40 | 35 |
45 | 60 | 30 | 8 | 4.5 | 75 | 40 | 35 |
46 | 60 | 35 | 8 | 4.5 | 35 | 40 | 35 |
47 | 60 | 35 | 8 | 4.5 | 55 | 40 | 35 |
48 | 60 | 35 | 8 | 4.5 | 75 | 40 | 35 |
Items | Before Remediation | After Remediation |
---|---|---|
Moisture content | 10.6% | 3.5% |
Temperature | 20.1 °C | 26.4 °C |
Conductivity | 24.0 mS/m | lower than analytical detection limit |
pH | 6.5 | 6.9 |
Nitrogen content | 8.3 g/kg | lower than analytical detection limit |
Phosphorus content | 11.3 g/kg | lower than analytical detection limit |
Potassium content | 29.3 g/kg | lower than analytical detection limit |
Initial Cr | 8.591 mg/kg | Change with parameters |
Initial As | 7.877 mg/kg | Change with parameters |
EE Chromium (Cr) | EE Arsenic (As) | Conditions | |
---|---|---|---|
Yabalak et al. [35] | 28.6% | - | 120 bar, 90 °C ACAC |
Kersch et al. [31] | 5–40% | - | 20 MPa,40 °C, several minutes to several hours Cyanex 302 |
This study | 34.58–90.68% | - | 20 MPa, 35 °C, 20–60 min |
Wang et al. [33] | 93% | - | 200 atm, 60 °C LiFDDC |
Wang et al. [33] | 91.4% | 87.0% | 200 atm, 60 °C Cyanex 302 |
This study | 83.20% | 97.65% | 20 MPa, 75 °C Cyanex 302 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Chen, L.; Mei, D.; Kanda, Y.; Komiya, A. Experimental Analysis of the Supercritical CO2-Based Circulation Type for the Remediation of Kilogram-Scale Soil Samples from Metal Ions. Separations 2024, 11, 303. https://doi.org/10.3390/separations11110303
Wu W, Chen L, Mei D, Kanda Y, Komiya A. Experimental Analysis of the Supercritical CO2-Based Circulation Type for the Remediation of Kilogram-Scale Soil Samples from Metal Ions. Separations. 2024; 11(11):303. https://doi.org/10.3390/separations11110303
Chicago/Turabian StyleWu, Wentao, Lin Chen, Deqing Mei, Yuki Kanda, and Atsuki Komiya. 2024. "Experimental Analysis of the Supercritical CO2-Based Circulation Type for the Remediation of Kilogram-Scale Soil Samples from Metal Ions" Separations 11, no. 11: 303. https://doi.org/10.3390/separations11110303
APA StyleWu, W., Chen, L., Mei, D., Kanda, Y., & Komiya, A. (2024). Experimental Analysis of the Supercritical CO2-Based Circulation Type for the Remediation of Kilogram-Scale Soil Samples from Metal Ions. Separations, 11(11), 303. https://doi.org/10.3390/separations11110303