Emerging and Conventional Water Desalination Technologies Powered by Renewable Energy and Energy Storage Systems toward Zero Liquid Discharge
Abstract
:1. Introduction
2. Classification and Selection of Desalination Technologies
3. Evaluation of Desalination Technology as a Whole
4. Renewable Energy Sources (RES)
Type of Renewable Energy | Generating Power through | Merits | Demerits | Capital (USD kWh−1) | Average Cost (USD kWh−1) | Ref. |
---|---|---|---|---|---|---|
Solar | Sun | No contamination of the air or water. The most abundant source of energy that is currently accessible. | Solar photovoltaic cells are dependent on the amount of sunshine that is available. They require a significant area of land to be installed. They have high capital expenditures. Storage and backup are needed. | 3000–5500 (PV) 4000–6000 (Thermal) | 0.038 (PV) 0.165 (Thermal) | [78] |
Wind | Wind | The land around wind farms can still be used, and there is only a minimal amount of impact on the ecosystems. There is no contamination of the air or water. | Wind farms are not appropriate to all geographical regions. Wind farms require a significant quantity of land. The amount of energy produced is directly related to the speed of the wind. Wind farms typically have a significant visual influence on the surrounding landscape | 1700–2800 | 0.106 | [79] |
Hydropower | Water | Abundant and free of pollution. Capable of producing significant quantities of energy. Reduced cost on average | The construction of dams can have a substantial influence on the environment; they can only be utilised in locations that have access to water; they are susceptible to drought; and they have the potential to create flooding in the surrounding area. | 1000–4000 | 0.039 | [80,81] |
Geothermal | Earth | There is no waste in the air or water. The average cost is low. It is effective. | There are relatively few geothermal fields; expensive initial cost of operation; increased expenses of maintenance as a result of the possibility of corrosion. | 3000–4000 | 0.037 | [80,81] |
Biomass | Plant and animal waste | Can be utilised in diesel engines; can be used to burn waste materials; abundant and renewable; can be used to power diesel engines. | The burning of biomass can result in air pollution (for example, it might lead to an increase in the emission of nitrogen oxides). The source needs to be positioned close to the usage in order to avoid the expenses of transportation. | 2800–3500 | 0.092 | [82] |
Osmosis | Salinity gradient (SGE) | Continual harnessing of energy, no GHG emissions or other pollutants. Can offer a steady source of electricity, can be scaled up or down, and may enhance and supplement other forms of RES. | High initial costs, geographical limitations, and localised environmental impacts could affect aquatic ecosystems if not properly managed; further R&D are needed to overcome current technical challenges. | 1000–3000 | 0.05–0.15 | [83] |
Ocean | Waves, tides, and currents | No emitting any GHG or air contaminants. Tremendous energy capacity. A range of technologies, including wave energy converters and tidal turbines, can be employed. | High initial costs, technical challenges, location limitations, maintenance and accessibility issues, and intermittent power, making them less predictable than solar or wind. They are in their early stages of development and may face environmental concerns, such as marine life impacts and noise pollution. | Wave: 4000–12,000 Tidal: 3000–7000 | Wave: 0.3–0.5 Tidal: 0.2–0.3 OTEC: 0.2–0.3 | [84,85,86] |
Hybrid Renewable Energy Systems
5. Energy Storage Systems (ESS)
Energy Storage and Scalability in Desalination
6. Implementing RES for the Process of Water Desalination
6.1. Membrane-Based Desalination
6.1.1. Reverse Osmosis (RO)
6.1.2. High-Pressure Reverse Osmosis (HPRO)
6.1.3. Osmotically Assisted Reverse Osmosis(OARO)
6.1.4. Membrane Distillation/Crystallisation (MD/Mcr)
6.1.5. Membrane Distillation Crystallisation (MDC)
6.1.6. Pervaporation (PEV)
6.1.7. Forward Osmosis (FO)
6.1.8. Electrodialysis (ED)
6.1.9. Electrodialysis Metathesis
6.2. Thermal Desalination
6.2.1. Multi-Effect Distillation (MED)
6.2.2. Mechanical Vapour Compression (MVC)
6.2.3. Humidification Dehumidification Distillation (HDH)
6.2.4. Solar Still (SS)
6.2.5. Brine Concentration (BC) and Brine Crystalliser (BCr)
6.2.6. Spray Dryers (SD)
6.2.7. Eutectic Freeze Crystallisation (EFC)
6.2.8. Wind-Aided Intensified Evaporation (WAIV)
7. Difficulties and Prospects
8. Conclusions
9. Future Prospective
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
AD | adsorption desalination |
AI | artificial intelligence |
AEM | anion exchange membranes |
AGMD | air gap MD |
AS | ammonium sulphate |
BC | brine concentrator |
BCr | brine crystalliser |
BESS | Battery Energy Storage Systems |
CAE | compressed air energy storage |
CDI | capacitive deionization |
CEM | cation exchange membranes |
CES | chemical energy storage |
CFRO | counterflow RO |
COMRO | cascading osmotically mediated RO |
CSS | conventional Solar Still |
CSP | concentrated solar power |
DCMD | direct contact MD |
DEAHP | double-effect absorption heat pump |
DPSC | dual purpose solar collector |
EcES | electrochemical energy storage |
ED | electrodialysis |
EDI | electro deionization |
EDM | electrodialysis metathesis |
EDR | electrodialysis reversal |
EFC | eutectic freeze crystallisation |
EP | electrophoretic potential |
ERD | energy recovery device |
ESS | energy storage systems |
ETC | evacuated tube collector |
FBES | flow battery energy storage |
FC | freeze desalination |
FES | flywheel energy storage |
FO | forward osmosis |
GES | gravity energy storage |
HDH | humidification dehumidification |
HERO | high-efficiency RO |
HPRO | high-pressure RO |
IEM | ion-exchange membranes |
IoT | Internet of things |
MBD | membrane-based desalination |
MCr | membrane crystallisation |
MCr | membrane crystallisation |
MD | membrane distillation |
MDC | microbial desalination cells |
MED | multi-effect distillation |
MES | mechanical energy storage |
MLD | minimal liquid discharge |
MSS | modified Solar Still |
MSF | multi-stage flash |
MVC | mechanical vapour compression |
NF | nanofiltration |
non-RES | non-renewable energy source |
OARO | osmotically assisted RO |
OTEC | ocean thermal energy conversion |
PCMs | phase-change materials |
PEF | pulsed electrical field |
PEV | pervaporation |
PHES | pumped hydro energy storage |
PM | porous material |
PSB | polysulfide bromide battery |
PTES | pumped thermal energy storage |
PV | photovoltaic |
RE | renewable energy |
RES | renewable energy sources |
RO | reverse osmosis |
ROSA | reverse osmosis system analysis |
SD | spray dryers |
SEC | specific energy consumption |
SGE | salinity gradient energy |
SMES | superconducting magnetic energy storage |
SS | solar still |
TCES | thermochemical energy storage |
TD | thermal distillation |
TDS | total dissolved solids |
TES | thermal energy storage |
TED | tidal energy desalination |
TFC | thin-film composite |
TFN | thin-film nanocomposite |
TVC | thermal vapour compression |
UF | ultra-filtration |
VC | vapour compression distillation |
VMD | vacuum MD |
V-MEMD | vacuum-multi-effect MD |
VRB | vanadium redox battery |
WAIV | wind-aided intensified evaporation |
WECs | wave energy converters |
ZLD | zero liquid discharge |
ZnBr | zinc–bromine battery |
References
- Fridell, R. Protecting Earth’s Water Supply; Saving Our Living Earth; Lerner Publishing Group: Minneapolis, MN, USA, 2015; ISBN 9781512410518. [Google Scholar]
- WHO/UNICEF Joint Water Supply; Sanitation Monitoring Programme. Water for Life: Making It Happen; Academic Search Complete; World Health Organization: Geneva, Switzerland, 2005; ISBN 9789241562935. [Google Scholar]
- Sherwin, F. The New Ocean Book; Wonders of Creation; New Leaf Publishing Group, Incorporated: Green Forest, AR, USA, 2017; ISBN 9781614584513. [Google Scholar]
- Liyanaarachchi, S.; Shu, L.; Muthukumaran, S.; Jegatheesan, V.; Baskaran, K. Problems in Seawater Industrial Desalination Processes and Potential Sustainable Solutions: A Review. Rev. Environ. Sci. Biotechnol. 2014, 13, 203–214. [Google Scholar] [CrossRef]
- Panagopoulos, A. A Comparative Study on Minimum and Actual Energy Consumption for the Treatment of Desalination Brine. Energy 2020, 212, 118733. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Haralambous, K.-J. Minimal Liquid Discharge (MLD) and Zero Liquid Discharge (ZLD) Strategies for Wastewater Management and Resource Recovery–Analysis, Challenges and Prospects. J. Environ. Chem. Eng. 2020, 8, 104418. [Google Scholar] [CrossRef]
- Cabrera, E.; Estrela, T.; Lora, J. Desalination in Spain. Past, Present and Future. La Houille Blanche 2019, 105, 85–92. [Google Scholar] [CrossRef]
- Almasoudi, S.; Jamoussi, B. Desalination Technologies and Their Environmental Impacts: A Review. Sustain. Chem. One World 2024, 1, 100002. [Google Scholar] [CrossRef]
- Panagopoulos, A. Process Simulation and Techno-economic Assessment of a Zero Liquid Discharge/Multi-effect Desalination/Thermal Vapor Compression (ZLD/MED/TVC) System. Int. J. Energy Res. 2020, 44, 473–495. [Google Scholar] [CrossRef]
- Zheng, Y.; Caceres Gonzalez, R.A.; Hatzell, K.B.; Hatzell, M.C. Large-Scale Solar-Thermal Desalination. Joule 2021, 5, 1971–1986. [Google Scholar] [CrossRef]
- Kanka, S.D.; Kibria, M.G.; Anika, U.A.; Das, B.K.; Hossain, M.S.; Roy, D.; Mohtasim, M.S. Impact of Various Environmental Parameters and Production Enhancement Techniques on Direct Solar Still: A Review. Sol. Energy 2024, 267, 112216. [Google Scholar] [CrossRef]
- Al-Addous, M.; Bdour, M.; Rabaiah, S.; Boubakri, A.; Schweimanns, N.; Barbana, N.; Wellmann, J. Innovations in Solar-Powered Desalination: A Comprehensive Review of Sustainable Solutions for Water Scarcity in the Middle East and North Africa (MENA) Region. Water 2024, 16, 1877. [Google Scholar] [CrossRef]
- Jafarizadeh, H.; Yamini, E.; Zolfaghari, S.M.; Esmaeilion, F.; Assad, M.E.H.; Soltani, M. Navigating Challenges in Large-Scale Renewable Energy Storage: Barriers, Solutions, and Innovations. Energy Rep. 2024, 12, 2179–2192. [Google Scholar] [CrossRef]
- Cabrera, P.; Carta, J.A.; Matos, C.; Lund, H. Lessons Learned in Wind-Driven Desalination Systems in the Canary Islands: Useful Knowledge for Other World Islands. Desalination 2024, 583, 117697. [Google Scholar] [CrossRef]
- Ghanbari, K.; Maleki, A.; Rezaei Ochbelagh, D. Optimal Design of Solar/Wind/Energy Storage System-Powered RO Desalination Unit: Single and Multi-Objective Optimization. Energy Convers. Manag. 2024, 315, 118768. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Algazzar, A.M.; Essa, F.A.; Elsheikh, A.H.; Sathyamurthy, R.; Manokar, A.M.; Shanmugan, S.; Panchal, H.; Kumar, R.; Abdelgaied, M. Geothermal and Solar Energy in Water Desalination and Power Generation: Comprehensive Review. Energy Syst. 2024. [Google Scholar] [CrossRef]
- Raajiv, R.; Vijaya Kumar, R.; Pandey, J.K. Ocean Energy—A Myriad of Opportunities in the Renewable Energy Sector. In Clean and Renewable Energy Production; Wiley: Hoboken, NJ, USA, 2024; pp. 225–246. ISBN 9781394174805. [Google Scholar]
- Collado-Capell, C.; Menon, A.K. Performance Modeling and Cost Optimization of a Solar Desalination System Using Forward Osmosis with Energy Storage. Renew. Energy 2024, 230, 120866. [Google Scholar] [CrossRef]
- Ojelade, O.A.; Jolaoso, L.A. Electrodialysis and Membrane Capacitive Deionization. In Electrochemical Membrane Technology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 189–231. ISBN 9780443140051. [Google Scholar]
- Nurjanah, I.; Chang, T.T.; You, S.J.; Huang, C.Y.; Sean, W.Y. Reverse Osmosis Integrated with Renewable Energy as Sustainable Technology: A Review. Desalination 2024, 581, 117590. [Google Scholar] [CrossRef]
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Mahmood Ali, B.; Algburi, S.; Alzoubi, H.M.; Khudhair Al-Jiboory, A.; Zuhair Sameen, A.; Salman, H.M.; Jaszczur, M. The Renewable Energy Role in the Global Energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Manju, S.; Sagar, N. Renewable Energy Integrated Desalination: A Sustainable Solution to Overcome Future Fresh-Water Scarcity in India. Renew. Sustain. Energy Rev. 2017, 73, 594–609. [Google Scholar] [CrossRef]
- Farhang, B.; Ghaebi, H.; Javani, N. Techno-Economic Modeling of a Novel Poly-Generation System Based on Biogas for Power, Hydrogen, Freshwater, and Ammonia Production. J. Clean. Prod. 2023, 417, 137907. [Google Scholar] [CrossRef]
- Ahmadi, S.; Gharehghani, A.; Soltani, M.M.; Fakhari, A.H. Design and Evaluation of Renewable Energies-Based Multi-Generation System for Hydrogen Production, Freshwater and Cooling. Renew. Energy 2022, 198, 916–935. [Google Scholar] [CrossRef]
- Dezhdar, A.; Assareh, E.; Agarwal, N.; bedakhanian, A.; Keykhah, S.; Fard, G.Y.; Zadsar, N.; Aghajari, M.; Lee, M. Transient Optimization of a New Solar-Wind Multi-Generation System for Hydrogen Production, Desalination, Clean Electricity, Heating, Cooling, and Energy Storage Using TRNSYS. Renew. Energy 2023, 208, 512–537. [Google Scholar] [CrossRef]
- Wen, D.; Kuo, P.-C.; Aziz, M. Novel Renewable Seawater Desalination System Using Hydrogen as Energy Carrier for Self-Sustaining Community. Desalination 2024, 579, 117475. [Google Scholar] [CrossRef]
- Elsheniti, M.B.; Ibrahim, A.; Elsamni, O.; Elewa, M. Experimental and Economic Investigation of Sweeping Gas Membrane Distillation/Pervaporation Modules Using Novel Pilot Scale Device. Sep. Purif. Technol. 2023, 310, 123165. [Google Scholar] [CrossRef]
- Al-Harby, N.F.; El Batouti, M.; Elewa, M.M. A Comparative Analysis of Pervaporation and Membrane Distillation Techniques for Desalination Utilising the Sweeping Air Methodology with Novel and Economical Pervaporation Membranes. Polymers 2023, 15, 4237. [Google Scholar] [CrossRef] [PubMed]
- Ghazouani, N.; El-Bary, A.A.; Hassan, G.E.; Becheikh, N.; Bawadekji, A.; Elewa, M.M. Solar Desalination by Humidification–Dehumidification: A Review. Water 2022, 14, 3424. [Google Scholar] [CrossRef]
- Ghazouani, N.; Bawadekji, A.; El-Bary, A.A.; Becheikh, N.; Alassaf, Y.; Hassan, G.E.; Elewa, M.M. Greenhouse Desalination by Humidification–Dehumidification Using a Novel Green Packing Material. Water 2022, 14, 869. [Google Scholar] [CrossRef]
- Naim, M.M.; Elewa, M.M.; Moneer, A.A.; El-Shafei, A.A. Desalination by Directional Freezing: An Experimental Investigation. Desalination Water Treat. 2017, 73, 185–197. [Google Scholar] [CrossRef]
- Al-Othman, A.; Darwish, N.N.; Qasim, M.; Tawalbeh, M.; Darwish, N.A.; Hilal, N. Nuclear Desalination: A State-of-the-Art Review. Desalination 2019, 457, 39–61. [Google Scholar] [CrossRef]
- Filippini, G.; Al-Obaidi, M.A.; Manenti, F.; Mujtaba, I.M. Performance Analysis of Hybrid System of Multi Effect Distillation and Reverse Osmosis for Seawater Desalination via Modelling and Simulation. Desalination 2018, 448, 21–35. [Google Scholar] [CrossRef]
- Ihm, S.; Al-Najdi, O.Y.; Hamed, O.A.; Jun, G.; Chung, H. Energy Cost Comparison between MSF, MED and SWRO: Case Studies for Dual Purpose Plants. Desalination 2016, 397, 116–125. [Google Scholar] [CrossRef]
- Kolliopoulos, G.; Martin, J.T.; Papangelakis, V.G. Energy Requirements in the Separation-Regeneration Step in Forward Osmosis Using TMA–CO2–H2O as the Draw Solution. Chem. Eng. Res. Des. 2018, 140, 166–174. [Google Scholar] [CrossRef]
- Lokare, O.R.; Tavakkoli, S.; Khanna, V.; Vidic, R.D. Importance of Feed Recirculation for the Overall Energy Consumption in Membrane Distillation Systems. Desalination 2018, 428, 250–254. [Google Scholar] [CrossRef]
- Pronk, P.; Infante Ferreira, C.A.; Witkamp, G.J. Prevention of Crystallization Fouling during Eutectic Freeze Crystallization in Fluidized Bed Heat Exchangers. Chem. Eng. Process. Process Intensif. 2008, 47, 2140–2149. [Google Scholar] [CrossRef]
- Basile, A.; Curcio, E.; Inamuddin (Eds.) Current Trends and Future Developments on (Bio-) Membranes; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128135518. [Google Scholar]
- Salmón, I.R.; Luis, P. Membrane Crystallization via Membrane Distillation. Chem. Eng. Process.-Process Intensif. 2018, 123, 258–271. [Google Scholar] [CrossRef]
- Gilron, J.; Folkman, Y.; Savliev, R.; Waisman, M.; Kedem, O. WAIV—Wind Aided Intensified Evaporation for Reduction of Desalination Brine Volume. Desalination 2003, 158, 205–214. [Google Scholar] [CrossRef]
- Valladares Linares, R.; Li, Z.; Yangali-Quintanilla, V.; Ghaffour, N.; Amy, G.; Leiknes, T.; Vrouwenvelder, J.S. Life Cycle Cost of a Hybrid Forward Osmosis—Low Pressure Reverse Osmosis System for Seawater Desalination and Wastewater Recovery. Water Res. 2016, 88, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Schantz, A.B.; Xiong, B.; Dees, E.; Moore, D.R.; Yang, X.; Kumar, M. Emerging Investigators Series: Prospects and Challenges for High-Pressure Reverse Osmosis in Minimizing Concentrated Waste Streams. Environ. Sci. 2018, 4, 894–908. [Google Scholar] [CrossRef]
- Bartholomew, T.V.; Siefert, N.S.; Mauter, M.S. Cost Optimization of Osmotically Assisted Reverse Osmosis. Environ. Sci. Technol. 2018, 52, 11813–11821. [Google Scholar] [CrossRef]
- Alspach, B. Produced Water and Salinity Management: The Desalination Frontier. J. Am. Water Work. Assoc. 2014, 106, 47–52. [Google Scholar] [CrossRef]
- Deyab, M.A. Enhancement of Corrosion Resistance in MSF Desalination Plants during Acid Cleaning Operation by Cationic Surfactant. Desalination 2019, 456, 32–37. [Google Scholar] [CrossRef]
- Kesieme, U.K.; Milne, N.; Aral, H.; Cheng, C.Y.; Duke, M. Economic Analysis of Desalination Technologies in the Context of Carbon Pricing, and Opportunities for Membrane Distillation. Desalination 2013, 323, 66–74. [Google Scholar] [CrossRef]
- Yan, H.; Wang, Y.; Wu, L.; Shehzad, M.A.; Jiang, C.; Fu, R.; Liu, Z.; Xu, T. Multistage-Batch Electrodialysis to Concentrate High-Salinity Solutions: Process Optimisation, Water Transport, and Energy Consumption. J. Membr. Sci. 2019, 570, 245–257. [Google Scholar] [CrossRef]
- Reig, M.; Casas, S.; Aladjem, C.; Valderrama, C.; Gibert, O.; Valero, F.; Centeno, C.M.; Larrotcha, E.; Cortina, J.L. Concentration of NaCl from Seawater Reverse Osmosis Brines for the Chlor-Alkali Industry by Electrodialysis. Desalination 2014, 342, 107–117. [Google Scholar] [CrossRef]
- Zhao, D.; Lee, L.Y.; Ong, S.L.; Chowdhury, P.; Siah, K.B.; Ng, H.Y. Electrodialysis Reversal for Industrial Reverse Osmosis Brine Treatment. Sep. Purif. Technol. 2019, 213, 339–347. [Google Scholar] [CrossRef]
- Mikhaylin, S.; Bazinet, L. Fouling on Ion-Exchange Membranes: Classification, Characterization and Strategies of Prevention and Control. Adv. Colloid. Interface Sci. 2016, 229, 34–56. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, R.L.; Hancock, N.T.; Nowosielski-Slepowron, M.S.; McGurgan, G.D. Pilot Demonstration of the NH3/CO2 Forward Osmosis Desalination Process on High Salinity Brines. Desalination 2013, 312, 67–74. [Google Scholar] [CrossRef]
- Sanmartino, J.A.; Khayet, M.; García-Payo, M.C.; El-Bakouri, H.; Riaza, A. Treatment of Reverse Osmosis Brine by Direct Contact Membrane Distillation: Chemical Pretreatment Approach. Desalination 2017, 420, 79–90. [Google Scholar] [CrossRef]
- Ali, A.; Quist-Jensen, C.A.; Macedonio, F.; Drioli, E. Application of Membrane Crystallization for Minerals’ Recovery from Produced Water. Membranes 2015, 5, 772–792. [Google Scholar] [CrossRef]
- Chen, Q.-B.; Ren, H.; Tian, Z.; Sun, L.; Wang, J. Conversion and Pre-Concentration of SWRO Reject Brine into High Solubility Liquid Salts (HSLS) by Using Electrodialysis Metathesis. Sep. Purif. Technol. 2019, 213, 587–598. [Google Scholar] [CrossRef]
- Randall, D.G.; Zinn, C.; Lewis, A.E. Treatment of Textile Wastewaters Using Eutectic Freeze Crystallization. Water Sci. Technol. 2014, 70, 736–741. [Google Scholar] [CrossRef]
- Chivavava, J.; Rodriguez-Pascual, M.; Lewis, A.E. Effect of Operating Conditions on Ice Characteristics in Continuous Eutectic Freeze Crystallization. Chem. Eng. Technol. 2014, 37, 1314–1320. [Google Scholar] [CrossRef]
- Miremadi, I.; Saboohi, Y.; Arasti, M. The Influence of Public R&D and Knowledge Spillovers on the Development of Renewable Energy Sources: The Case of the Nordic Countries. Technol. Forecast. Soc. Chang. 2019, 146, 450–463. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Zhong, Y.; Leroy, A.; Xu, Z.; Zhao, L.; Wang, E.N. Highly Efficient and Salt Rejecting Solar Evaporation via a Wick-Free Confined Water Layer. Nat. Commun. 2022, 13, 849. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, F.; Yang, Y.; Zhao, S.; Sheng, M.; Pan, C.; Que, W. Innovative Salt-Blocking Technologies of Photothermal Materials in Solar-Driven Interfacial Desalination. J. Mater. Chem. A Mater. 2021, 9, 16233–16254. [Google Scholar] [CrossRef]
- Harnessing Solar Energy for Water Desalination—Better Earth. Available online: https://www.betterearth.solar/blog/solar-energy-water-desalination/ (accessed on 29 August 2024).
- Subsea Water Desalination | Offshore Wind Power | Hydro Wind Energy. Available online: https://hw.energy/water/ (accessed on 29 August 2024).
- Hydro Wind Energy Solution Announces New Innovative Technology Which Makes Use of Offshore Wind Power to Make Desalination More Accessible, Affordable and Environmentally Safe | Energy Central. Available online: https://energycentral.com/news/hydro-wind-energy-solution-announces-new-innovative-technology-which-makes-use-offshore-wind (accessed on 29 August 2024).
- Greco, F.; Heijman, S.; Jarquin-Laguna, A. Integration of Wind Energy and Desalination Systems: A Review Study. Processes 2021, 9, 2181. [Google Scholar] [CrossRef]
- Department of Energy Announces $75 Million for the National Alliance for Water Innovation to Advance Desalination and Water Reuse Technologies | Department of Energy. Available online: https://www.energy.gov/eere/articles/department-energy-announces-75-million-national-alliance-water-innovation-advance (accessed on 29 August 2024).
- National Alliance for Water Innovation (NAWI)—Innovating for a Water and Energy Secure Future for the United States. Available online: https://www.nawihub.org/ (accessed on 29 August 2024).
- Enhanced Geothermal Systems: 10 Breakthrough Technologies 2024 | MIT Technology Review. Available online: https://www.technologyreview.com/2024/01/08/1085112/enhanced-geothermal-systems-renewable-energy-drilling-breakthrough-technologies/ (accessed on 30 August 2024).
- Missimer, T.M.; Choon Ng, K.; Thuw, K.; Wakil Shahzad, M. Geothermal Electricity Generation and Desalination: An Integrated Process Design to Conserve Latent Heat with Operational Improvements. Desalination Water Treat. 2016, 57, 23110–23118. [Google Scholar] [CrossRef]
- Dashputre, A.; Kaushik, A.; Pal, A.; Jariwala, D.; Yadav, K.; Shah, M. Geothermal Energy Integrated Multi-Effect Evaporator (MEE) and Multi-Effect Distillation (MED)-Based Desalination Systems: An Ecofriendly and Sustainable Solutions. Environ. Sci. Pollut. Res. 2023, 30, 67941–67952. [Google Scholar] [CrossRef]
- Al-Obaidi, M.A.; Alsadaie, S.; Alsarayreh, A.; Sowgath, M.T.; Mujtaba, I.M. Integration of Renewable Energy Systems in Desalination. Processes 2024, 12, 770. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Haralambous, K.-J. Environmental Impacts of Desalination and Brine Treatment-Challenges and Mitigation Measures. Mar. Pollut. Bull. 2020, 161, 111773. [Google Scholar] [CrossRef]
- Amiri, A.; Brewer, C.E. Biomass as a Renewable Energy Source for Water Desalination: A Review. Desalination Water Treat. 2020, 181, 113–122. [Google Scholar] [CrossRef]
- Panagopoulos, A. Water-Energy Nexus: Desalination Technologies and Renewable Energy Sources. Environ. Sci. Pollut. Res. 2021, 28, 21009–21022. [Google Scholar] [CrossRef]
- U.S. Department of Energy Invests Nearly $10 Million to Advance Marine Energy | Department of Energy. Available online: https://www.energy.gov/eere/articles/us-department-energy-invests-nearly-10-million-advance-marine-energy (accessed on 29 August 2024).
- Water Desalination Using Renewable Energy. Energy Technology Systems Analysis Programme. 2012. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2012/IRENA-ETSAP-Tech-Brief-I12-Water-Desalination.pdf (accessed on 3 October 2024).
- Salinity Gradient, Ocean Energy, Renewable Energy. Available online: https://www.irena.org/publications/2014/Jun/Salinity-gradient (accessed on 3 October 2024).
- Sustainable Energy from Salinity Gradients | Tethys Engineering. Available online: https://tethys-engineering.pnnl.gov/publications/sustainable-energy-salinity-gradients (accessed on 30 August 2024).
- Greer, R.A.; Lee, K.; Fencl, A.; Sneegas, G. Public–Private Partnerships in the Water Sector: The Case of Desalination. Water Resour. Manag. 2021, 35, 3497–3511. [Google Scholar] [CrossRef]
- Israel, A.; Jehling, M. How Modern Are Renewables? The Misrecognition of Traditional Solar Thermal Energy in Peru’s Energy Transition. Energy Policy 2019, 133, 110905. [Google Scholar] [CrossRef]
- Nazir, M.S.; Mahdi, A.J.; Bilal, M.; Sohail, H.M.; Ali, N.; Iqbal, H.M.N. Environmental Impact and Pollution-Related Challenges of Renewable Wind Energy Paradigm—A Review. Sci. Total Environ. 2019, 683, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Clauser, C.; Ewert, M. The Renewables Cost Challenge: Levelized Cost of Geothermal Electric Energy Compared to Other Sources of Primary Energy–Review and Case Study. Renew. Sustain. Energy Rev. 2018, 82, 3683–3693. [Google Scholar] [CrossRef]
- Hossain, M.; Huda, A.S.N.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B.; Stojcevski, A.; Ahmed, M. A State-of-the-Art Review of Hydropower in Malaysia as Renewable Energy: Current Status and Future Prospects. Energy Strategy Rev. 2018, 22, 426–437. [Google Scholar] [CrossRef]
- Manolis, E.N.; Zagas, T.D.; Karetsos, G.K.; Poravou, C.A. Ecological Restrictions in Forest Biomass Extraction for a Sustainable Renewable Energy Production. Renew. Sustain. Energy Rev. 2019, 110, 290–297. [Google Scholar] [CrossRef]
- Lin, S.; Wang, Z.; Wang, L.; Elimelech, M. Salinity Gradient Energy Is Not a Competitive Source of Renewable Energy. Joule 2024, 8, 334–343. [Google Scholar] [CrossRef]
- Oceans Generate Large Amounts of Clean Energy, Here Are the Pros and Cons—The Weather Network. Available online: https://www.theweathernetwork.com/en/news/climate/solutions/oceans-generate-large-amounts-of-clean-energy-here-are-the-pros-and-cons (accessed on 30 August 2024).
- 10 Ocean Energy Advantages and Disadvantages—Energy Theory. Available online: https://energytheory.com/10-ocean-energy-advantages-and-disadvantages/ (accessed on 30 August 2024).
- Exploring the Pros and Cons of Ocean Energy—The Renewables. Available online: https://therenewables.org/pros-and-cons-of-ocean-energy/ (accessed on 30 August 2024).
- Alghassab, M.A. A Review of Hybrid Solar Desalination Systems: Structure and Performance. Water Sci. Technol. 2024, 89, 1357–1381. [Google Scholar] [CrossRef]
- Mohammed, A.; Alsagheer, F.; Ghaithan, A.M.; Mazher, K.M. An Optimization of Hybrid Renewable Energy System for Seawater Desalination in Saudi Arabia. Int. J. Environ. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Lotfy, H.R.; Staš, J.; Roubík, H. Renewable Energy Powered Membrane Desalination—Review of Recent Development. Environ. Sci. Pollut. Res. 2022, 29, 46552–46568. [Google Scholar] [CrossRef]
- Esmaeilion, F. Hybrid Renewable Energy Systems for Desalination. Appl. Water Sci. 2020, 10, 84. [Google Scholar] [CrossRef]
- Wang, R.; He, W. Accelerating Solar-Powered Desalination Deployment through Transferable Learning. Commun. Mater. 2024, 5, 203. [Google Scholar] [CrossRef]
- Ghofrani, M.; Hosseini, N.N. Optimizing Hybrid Renewable Energy Systems: A Review. In Sustainable Energy—Technological Issues, Applications and Case Studies; InTechOpen Limited: London, UK, 2016; ISBN 9789535128403. [Google Scholar]
- Rekioua, D. Hybrid Renewable Energy Systems Overview. In Hybrid Renewable Energy Systems: Optimization and Power Management Control; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–37. ISBN 9783030340209. [Google Scholar]
- Reveles-Miranda, M.; Ramirez-Rivera, V.; Pacheco-Catalán, D. Hybrid Energy Storage: Features, Applications, and Ancillary Benefits. Renew. Sustain. Energy Rev. 2024, 192, 114196. [Google Scholar] [CrossRef]
- Abdalla, A.N.; Nazir, M.S.; Tao, H.; Cao, S.; Ji, R.; Jiang, M.; Yao, L. Integration of Energy Storage System and Renewable Energy Sources Based on Artificial Intelligence: An Overview. J. Energy Storage 2021, 40, 102811. [Google Scholar] [CrossRef]
- Mitali, J.; Dhinakaran, S.; Mohamad, A.A. Energy Storage Systems: A Review. Energy Storage Sav. 2022, 1, 166–216. [Google Scholar] [CrossRef]
- Akinyele, D.O.; Rayudu, R.K. Review of Energy Storage Technologies for Sustainable Power Networks. Sustain. Energy Technol. Assess. 2014, 8, 74–91. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on Thermal Energy Storage with Phase Change Materials and Applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Gbenou, T.R.S.; Fopah-Lele, A.; Wang, K. Recent Status and Prospects on Thermochemical Heat Storage Processes and Applications. Entropy 2021, 23, 953. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Wang, L.; Ling, H.; Ge, Z.; Lin, X.; Dai, X.; Chen, H. Critical Review of Thermochemical Energy Storage Systems Based on Cobalt, Manganese, and Copper Oxides. Renew. Sustain. Energy Rev. 2022, 158, 112076. [Google Scholar] [CrossRef]
- Hossain, E.; Faruque, H.M.R.; Sunny, M.S.H.; Mohammad, N.; Nawar, N. A Comprehensive Review on Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects. Energies 2020, 13, 3651. [Google Scholar] [CrossRef]
- Krishan, O.; Suhag, S. An Updated Review of Energy Storage Systems: Classification and Applications in Distributed Generation Power Systems Incorporating Renewable Energy Resources. Int. J. Energy Res. 2019, 43, 6171–6210. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M. Pumped Hydro Energy Storage System: A Technological Review. Renew. Sustain. Energy Rev. 2015, 44, 586–598. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Abdelkareem, M.A.; Ramadan, M. Critical Review of Flywheel Energy Storage System. Energies 2021, 14, 2159. [Google Scholar] [CrossRef]
- Zhang, J.W.; Wang, Y.H.; Liu, G.C.; Tian, G.Z. A Review of Control Strategies for Flywheel Energy Storage System and a Case Study with Matrix Converter. Energy Rep. 2022, 8, 3948–3963. [Google Scholar] [CrossRef]
- Revankar, S.T. Chemical Energy Storage. In Storage and Hybridization of Nuclear Energy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 177–227. ISBN 9780128139752. [Google Scholar]
- Zhang, F.; Zhao, P.; Niu, M.; Maddy, J. The Survey of Key Technologies in Hydrogen Energy Storage. Int. J. Hydrogen Energy 2016, 41, 14535–14552. [Google Scholar] [CrossRef]
- Olabi, A.G.; Maghrabie, H.M.; Adhari, O.H.K.; Sayed, E.T.; Yousef, B.A.A.; Salameh, T.; Kamil, M.; Abdelkareem, M.A. Battery Thermal Management Systems: Recent Progress and Challenges. Int. J. Thermofluids 2022, 15, 100171. [Google Scholar] [CrossRef]
- Uke, S.J.; Akhare, V.P.; Bambole, D.R.; Bodade, A.B.; Chaudhari, G.N. Recent Advancements in the Cobalt Oxides, Manganese Oxides, and Their Composite as an Electrode Material for Supercapacitor: A Review. Front. Mater. 2017, 4, 21. [Google Scholar] [CrossRef]
- Sung, J.; Shin, C. Recent Studies on Supercapacitors with Next-Generation Structures. Micromachines 2020, 11, 1125. [Google Scholar] [CrossRef]
- Bu, F.; Zhou, W.; Xu, Y.; Du, Y.; Guan, C.; Huang, W. Recent Developments of Advanced Micro-Supercapacitors: Design, Fabrication and Applications. NPJ Flex. Electron. 2020, 4, 31. [Google Scholar] [CrossRef]
- Gude, V.G. Energy Storage for Sustainable Desalination and Renewable Energy Integration. In Energy Storage for Multigeneration; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–23. ISBN 9780128219201. [Google Scholar]
- Gude, V.G. Energy Storage for Desalination Processes Powered by Renewable Energy and Waste Heat Sources. Appl. Energy 2015, 137, 877–898. [Google Scholar] [CrossRef]
- Huang, J.; Zheng, H.; Kong, H. Key Pathways for Efficient Solar Thermal Desalination. Energy Convers. Manag. 2024, 299, 117806. [Google Scholar] [CrossRef]
- Ayaz, M.; Namazi, M.A.; Din, M.A.U.; Ershath, M.I.M.; Mansour, A.; Aggoune, E.H.M. Sustainable Seawater Desalination: Current Status, Environmental Implications and Future Expectations. Desalination 2022, 540, 116022. [Google Scholar] [CrossRef]
- Ghazi, Z.M.; Rizvi, S.W.F.; Shahid, W.M.; Abdulhameed, A.M.; Saleem, H.; Zaidi, S.J. An Overview of Water Desalination Systems Integrated with Renewable Energy Sources. Desalination 2022, 542, 116063. [Google Scholar] [CrossRef]
- Kumari, P.; Tripathi, K.M.; Jangir, L.K.; Gupta, R.; Awasthi, K. Recent Advances in Application of the Graphene-Based Membrane for Water Purification. Mater. Today Chem. 2021, 22, 100597. [Google Scholar] [CrossRef]
- Uddin, M.; Mo, H.; Dong, D.; Elsawah, S.; Zhu, J.; Guerrero, J.M. Microgrids: A Review, Outstanding Issues and Future Trends. Energy Strategy Rev. 2023, 49, 101127. [Google Scholar] [CrossRef]
- Wang, C.; Meng, P.; Wang, S.; Song, D.; Xiao, Y.; Zhang, Y.; Ma, Q.; Liu, S.; Wang, K.; Zhang, Y. Comparison of Two Types of Energy Recovery Devices: Pressure Exchanger and Turbine in an Island Desalination Project Case. Desalination 2022, 533, 115752. [Google Scholar] [CrossRef]
- Ali, A.; Tufa, R.A.; Macedonio, F.; Curcio, E.; Drioli, E. Membrane Technology in Renewable-Energy-Driven Desalination. Renew. Sustain. Energy Rev. 2018, 81, 1–21. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; González, D. Evaluation of the Economics of Desalination by Integrating Greenhouse Gas Emission Costs: An Empirical Application for Chile. Renew. Energy 2019, 133, 1327–1337. [Google Scholar] [CrossRef]
- Cherif, H.; Belhadj, J. Environmental Life Cycle Analysis of Water Desalination Processes. In Sustainable Desalination Handbook: Plant Selection, Design and Implementation; Butterworth-Heinemann: Oxford, UK, 2018; pp. 527–559. [Google Scholar] [CrossRef]
- Kalogirou, S. Survey of Solar Desalination Systems and System Selection. Energy 1997, 22, 69–81. [Google Scholar] [CrossRef]
- Pugsley, A.; Zacharopoulos, A.; Mondol, J.D.; Smyth, M. Global Applicability of Solar Desalination. Renew. Energy 2016, 88, 200–219. [Google Scholar] [CrossRef]
- Li, D.; Yan, Y.; Wang, H. Recent Advances in Polymer and Polymer Composite Membranes for Reverse and Forward Osmosis Processes. Prog. Polym. Sci. 2016, 61, 104–155. [Google Scholar] [CrossRef]
- Fane, A.G. (Tony) A Grand Challenge for Membrane Desalination: More Water, Less Carbon. Desalination 2018, 426, 155–163. [Google Scholar] [CrossRef]
- Duong, H.C.; Ansari, A.J.; Nghiem, L.D.; Pham, T.M.; Pham, T.D. Low Carbon Desalination by Innovative Membrane Materials and Processes. Curr. Pollut. Rep. 2018, 4, 251–264. [Google Scholar] [CrossRef]
- Pearce, G.K. UF/MF Pre-Treatment to RO in Seawater and Wastewater Reuse Applications: A Comparison of Energy Costs. Desalination 2008, 222, 66–73. [Google Scholar] [CrossRef]
- Cohen-Tanugi, D.; McGovern, R.K.; Dave, S.H.; Lienhard, J.H.; Grossman, J.C. Quantifying the Potential of Ultra-Permeable Membranes for Water Desalination. Energy Environ. Sci. 2014, 7, 1134–1141. [Google Scholar] [CrossRef]
- Li, X.; Chou, S.; Wang, R.; Shi, L.; Fang, W.; Chaitra, G.; Tang, C.Y.; Torres, J.; Hu, X.; Fane, A.G. Nature Gives the Best Solution for Desalination: Aquaporin-Based Hollow Fiber Composite Membrane with Superior Performance. J. Membr. Sci. 2015, 494, 68–77. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science (1979) 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Gude, V.G.; Nirmalakhandan, N.; Deng, S. Renewable and Sustainable Approaches for Desalination. Renew. Sustain. Energy Rev. 2010, 14, 2641–2654. [Google Scholar] [CrossRef]
- He, W.; Wang, Y.; Shaheed, M.H. Stand-Alone Seawater RO (Reverse Osmosis) Desalination Powered by PV (Photovoltaic) and PRO (Pressure Retarded Osmosis). Energy 2015, 86, 423–435. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse Osmosis Desalination: Water Sources, Technology, and Today’s Challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef]
- Caldera, U.; Bogdanov, D.; Breyer, C. Local Cost of Seawater RO Desalination Based on Solar PV and Wind Energy: A Global Estimate. Desalination 2016, 385, 207–216. [Google Scholar] [CrossRef]
- Ayou, D.S.; Ega, H.M.; Coronas, A. A Feasibility Study of a Small-Scale Photovoltaic-Powered Reverse Osmosis Desalination Plant for Potable Water and Salt Production in Madura Island: A Techno-Economic Evaluation. Therm. Sci. Eng. Prog. 2022, 35, 101450. [Google Scholar] [CrossRef]
- Gökçek, M.; Gökçek, Ö.B. Technical and Economic Evaluation of Freshwater Production from a Wind-Powered Small-Scale Seawater Reverse Osmosis System (WP-SWRO). Desalination 2016, 381, 47–57. [Google Scholar] [CrossRef]
- Bourouni, K.; Martin, R.; Tadrist, L.; Chaibi, M.T. Heat Transfer and Evaporation in Geothermal Desalination Units. Appl. Energy 1999, 64, 129–147. [Google Scholar] [CrossRef]
- Ling, C.; Wang, Y.; Min, C.; Zhang, Y. Economic Evaluation of Reverse Osmosis Desalination System Coupled with Tidal Energy. Front. Energy 2018, 12, 297–304. [Google Scholar] [CrossRef]
- Mokheimer, E.M.A.; Sahin, A.Z.; Al-Sharafi, A.; Ali, A.I. Modeling and Optimization of Hybrid Wind-Solar-Powered Reverse Osmosis Water Desalination System in Saudi Arabia. Energy Convers. Manag. 2013, 75, 86–97. [Google Scholar] [CrossRef]
- Bai, W.; Samineni, L.; Chirontoni, P.; Krupa, I.; Kasak, P.; Popelka, A.; Saleh, N.B.; Kumar, M. Quantifying and Reducing Concentration Polarization in Reverse Osmosis Systems. Desalination 2023, 554, 116480. [Google Scholar] [CrossRef]
- Kariman, H.; Shafieian, A.; Khiadani, M. Small Scale Desalination Technologies: A Comprehensive Review. Desalination 2023, 567, 116985. [Google Scholar] [CrossRef]
- Logan, B.E. The Global Challenge of Sustainable Seawater Desalination. Environ. Sci. Technol. Lett. 2017, 4, 197. [Google Scholar] [CrossRef]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A Review of Reverse Osmosis Membrane Materials for Desalination—Development to Date and Future Potential. J. Membr. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef]
- Misdan, N.; Lau, W.J.; Ismail, A.F. Seawater Reverse Osmosis (SWRO) Desalination by Thin-Film Composite Membrane-Current Development, Challenges and Future Prospects. Desalination 2012, 287, 228–237. [Google Scholar] [CrossRef]
- Shah, K.M.; Billinge, I.H.; Chen, X.; Fan, H.; Huang, Y.; Winton, R.K.; Yip, N.Y. Drivers, Challenges, and Emerging Technologies for Desalination of High-Salinity Brines: A Critical Review. Desalination 2022, 538, 115827. [Google Scholar] [CrossRef]
- Burn, S.; Gray, S. Efficient Desalination by Reverse Osmosis: A Guide to RO Practice; IWA Publishing: London, UK, 2015; ISBN 9781780405049. [Google Scholar]
- Harby, K.; Emad, M.; Benghanem, M.; Abolibda, T.Z.; Almohammadi, K.; Aljabri, A.; Alsaiari, A.; Elgendi, M. Reverse Osmosis Hybridization with Other Desalination Techniques: An Overview and Opportunities. Desalination 2024, 581, 117600. [Google Scholar] [CrossRef]
- Sadri, S.; Khoshkhoo, R.H.; Ameri, M. Optimum Exergoeconomic Modeling of Novel Hybrid Desalination System (MEDAD+RO). Energy 2018, 149, 74–83. [Google Scholar] [CrossRef]
- Toth, A.J. Modelling and Optimisation of Multi-Stage Flash Distillation and Reverse Osmosis for Desalination of Saline Process Wastewater Sources. Membranes 2020, 10, 265. [Google Scholar] [CrossRef]
- Paul, D.R. The Role of Membrane Pressure in Reverse Osmosis. J. Appl. Polym. Sci. 1972, 16, 771–782. [Google Scholar] [CrossRef]
- Nagy, E. Basic Equations of Mass Transport through a Membrane Layer; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128137222. [Google Scholar]
- Panagopoulos, A. Process Simulation and Analysis of High-Pressure Reverse Osmosis (HPRO) in the Treatment and Utilization of Desalination Brine (Saline Wastewater). Int. J. Energy Res. 2022, 46, 23083–23094. [Google Scholar] [CrossRef]
- Davenport, D.M.; Deshmukh, A.; Werber, J.R.; Elimelech, M. High-Pressure Reverse Osmosis for Energy-Efficient Hypersaline Brine Desalination: Current Status, Design Considerations, and Research Needs. Environ. Sci. Technol. Lett. 2018, 5, 467–475. [Google Scholar] [CrossRef]
- Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill Leachate Treatment: Review and Opportunity. J. Hazard. Mater. 2008, 150, 468–493. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Haralambous, K.-J.; Loizidou, M. Desalination Brine Disposal Methods and Treatment Technologies—A Review. Sci. Total Environ. 2019, 693, 133545. [Google Scholar] [CrossRef]
- Miller, S.; Shemer, H.; Semiat, R. Energy and Environmental Issues in Desalination. Desalination 2015, 366, 2–8. [Google Scholar] [CrossRef]
- Cui, P.; Qian, Y.; Yang, S. New Water Treatment Index System toward Zero Liquid Discharge for Sustainable Coal Chemical Processes. ACS Sustain. Chem. Eng. 2018, 6, 1370–1378. [Google Scholar] [CrossRef]
- Bartholomew, T.V.; Mey, L.; Arena, J.T.; Siefert, N.S.; Mauter, M.S. Osmotically Assisted Reverse Osmosis for High Salinity Brine Treatment. Desalination 2017, 421, 3–11. [Google Scholar] [CrossRef]
- Yip Lab. Available online: https://yiplab-h2o-e-env.eee.columbia.edu/ (accessed on 28 August 2024).
- Ju, J.; Lee, S.; Kim, Y.; Cho, H.; Lee, S. Theoretical and Experimental Analysis of Osmotically Assisted Reverse Osmosis for Minimum Liquid Discharge. Membranes 2023, 13, 814. [Google Scholar] [CrossRef]
- Peters, C.D.; Hankins, N.P. Osmotically Assisted Reverse Osmosis (OARO): Five Approaches to Dewatering Saline Brines Using Pressure-Driven Membrane Processes. Desalination 2019, 458, 1–13. [Google Scholar] [CrossRef]
- Chiao, Y.-H.; Mai, Z.; Hung, W.-S.; Matsuyama, H. Osmotically Assisted Solvent Reverse Osmosis Membrane for Dewatering of Aqueous Ethanol Solution. J. Membr. Sci. 2023, 672, 121434. [Google Scholar] [CrossRef]
- Lai, X.; Zhou, P.; Xiao, P.; Tao, W.; Xia, J.; Zheng, J.; Tian, H.; Dou, B. Analysis of Typical Chloride Solution Treatment by Osmotically Assisted Reverse Osmosis for Evaluating Application Potential in Geothermal Reinjection Well Protection. Sep. Purif. Technol. 2023, 324, 124503. [Google Scholar] [CrossRef]
- Hyrec. Available online: https://hyrec.com/ (accessed on 29 August 2024).
- Ohlund, R.J.; Dahdah, B.H.; Guillen, G.R.; Childress, A.E. Augmenting Ocean Water Desalination with Potable Reuse: Concept Feasibility in Terms of Cost and Environmental Impacts. Desalination 2024, 569, 116941. [Google Scholar] [CrossRef]
- Pangarkar, B.L.; Deshmukh, S.K.; Sapkal, V.S.; Sapkal, R.S. Review of Membrane Distillation Process for Water Purification. Desalination Water Treat. 2016, 57, 2959–2981. [Google Scholar] [CrossRef]
- Prado de Nicolás, A.; Molina-García, A.; García-Bermejo, J.T.; Vera-García, F. Reject Brine Management: Denitrification and Zero Liquid Discharge (ZLD)—Current Status, Challenges and Future Prospects. J. Clean. Prod. 2022, 381, 135124. [Google Scholar] [CrossRef]
- Cipollina, A.; Tzen, E.; Subiela, V.; Papapetrou, M.; Koschikowski, J.; Schwantes, R.; Wieghaus, M.; Zaragoza, G. Renewable Energy Desalination: Performance Analysis and Operating Data of Existing RES Desalination Plants. Desalination Water Treat. 2015, 55, 3120–3140. [Google Scholar] [CrossRef]
- Zhao, K.; Heinzl, W.; Wenzel, M.; Büttner, S.; Bollen, F.; Lange, G.; Heinzl, S.; Sarda, N. Experimental Study of the Memsys Vacuum-Multi-Effect-Membrane-Distillation (V-MEMD) Module. Desalination 2013, 323, 150–160. [Google Scholar] [CrossRef]
- Jansen, A.E.; Assink, J.W.; Hanemaaijer, J.H.; van Medevoort, J.; van Sonsbeek, E. Development and Pilot Testing of Full-Scale Membrane Distillation Modules for Deployment of Waste Heat. Desalination 2013, 323, 55–65. [Google Scholar] [CrossRef]
- Duong, H.C.; Chivas, A.R.; Nelemans, B.; Duke, M.; Gray, S.; Cath, T.Y.; Nghiem, L.D. Treatment of RO Brine from CSG Produced Water by Spiral-Wound Air Gap Membrane Distillation—A Pilot Study. Desalination 2015, 366, 121–129. [Google Scholar] [CrossRef]
- Banat, F.; Jwaied, N.; Rommel, M.; Koschikowski, J.; Wieghaus, M. Performance Evaluation of the “Large SMADES” Autonomous Desalination Solar-Driven Membrane Distillation Plant in Aqaba, Jordan. Desalination 2007, 217, 17–28. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Yang, H.; Chen, H. Feasibility Research of Potable Water Production via Solar-Heated Hollow Fiber Membrane Distillation System. Desalination 2009, 247, 403–411. [Google Scholar] [CrossRef]
- Manna, A.K.; Sen, M.; Martin, A.R.; Pal, P. Removal of Arsenic from Contaminated Groundwater by Solar-Driven Membrane Distillation. Environ. Pollut. 2010, 158, 805–811. [Google Scholar] [CrossRef]
- Guillén-Burrieza, E.; Blanco, J.; Zaragoza, G.; Alarcón, D.-C.; Palenzuela, P.; Ibarra, M.; Gernjak, W. Experimental Analysis of an Air Gap Membrane Distillation Solar Desalination Pilot System. J. Membr. Sci. 2011, 379, 386–396. [Google Scholar] [CrossRef]
- Saffarini, R.B.; Summers, E.K.; Arafat, H.A.; Lienhard, V.J.H. Economic Evaluation of Stand-Alone Solar Powered Membrane Distillation Systems. Desalination 2012, 299, 55–62. [Google Scholar] [CrossRef]
- Sarbatly, R.; Chiam, C.-K. Evaluation of Geothermal Energy in Desalination by Vacuum Membrane Distillation. Appl. Energy 2013, 112, 737–746. [Google Scholar] [CrossRef]
- Jaafar, S.; Sarbatly, R. Geothermal Water Desalination by Using Nanofiber Membrane. In Proceedings of the International Conference on Chemical, Environmental and Biological Sciences, Penang, Malaysia, 11–12 February 2012. [Google Scholar]
- Quist-Jensen, C.A.; Macedonio, F.; Drioli, E. Membrane Crystallization for Salts Recovery from Brine—An Experimental and Theoretical Analysis. Desalination Water Treat. 2016, 57, 7593–7603. [Google Scholar] [CrossRef]
- Zhang, X.; Koirala, R.; Pramanik, B.; Fan, L.; Date, A.; Jegatheesan, V. Challenges and Advancements in Membrane Distillation Crystallization for Industrial Applications. Environ. Res. 2023, 234, 116577. [Google Scholar] [CrossRef] [PubMed]
- Alessandro, F.; Macedonio, F.; Drioli, E. New Materials and Phenomena in Membrane Distillation. Chemistry 2023, 5, 65–84. [Google Scholar] [CrossRef]
- Quist-Jensen, C.A.; Macedonio, F.; Horbez, D.; Drioli, E. Reclamation of Sodium Sulfate from Industrial Wastewater by Using Membrane Distillation and Membrane Crystallization. Desalination 2017, 401, 112–119. [Google Scholar] [CrossRef]
- Balis, E.; Griffin, J.C.; Hiibel, S.R. Membrane Distillation-Crystallization for Inland Desalination Brine Treatment. Sep. Purif. Technol. 2022, 290, 120788. [Google Scholar] [CrossRef]
- Di Profio, G.; Salehi, S.M.; Curcio, E.; Drioli, E. 3.11 Membrane Crystallization Technology. In Comprehensive Membrane Science and Engineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 297–317. ISBN 9780444637963. [Google Scholar]
- Chimanlal, I.; Nthunya, L.N.; Quist-Jensen, C.; Richards, H. Membrane Distillation Crystallization for Water and Mineral Recovery: The Occurrence of Fouling and Its Control during Wastewater Treatment. Front. Chem. Eng. 2022, 4, 1066027. [Google Scholar] [CrossRef]
- Tjale, L.; Richards, H.; Mahlangu, O.; Nthunya, L.N. Silica Nanoparticle Modified Polysulfone/Polypropylene Membrane for Separation of Oil-Water Emulsions. Results Eng. 2022, 16, 100623. [Google Scholar] [CrossRef]
- Yao, M.; Tijing, L.D.; Naidu, G.; Kim, S.-H.; Matsuyama, H.; Fane, A.G.; Shon, H.K. A Review of Membrane Wettability for the Treatment of Saline Water Deploying Membrane Distillation. Desalination 2020, 479, 114312. [Google Scholar] [CrossRef]
- Afsari, M.; Shon, H.K.; Tijing, L.D. Janus Membranes for Membrane Distillation: Recent Advances and Challenges. Adv. Colloid. Interface Sci. 2021, 289, 102362. [Google Scholar] [CrossRef]
- Xiao, Z.; Guo, H.; He, H.; Liu, Y.; Li, X.; Zhang, Y.; Yin, H.; Volkov, A.V.; He, T. Unprecedented Scaling/Fouling Resistance of Omniphobic Polyvinylidene Fluoride Membrane with Silica Nanoparticle Coated Micropillars in Direct Contact Membrane Distillation. J. Membr. Sci. 2020, 599, 117819. [Google Scholar] [CrossRef]
- Shahid, M.K.; Mainali, B.; Rout, P.R.; Lim, J.W.; Aslam, M.; Al-Rawajfeh, A.E.; Choi, Y. A Review of Membrane-Based Desalination Systems Powered by Renewable Energy Sources. Water 2023, 15, 534. [Google Scholar] [CrossRef]
- Xue, Y.L.; Huang, J.; Lau, C.H.; Cao, B.; Li, P. Tailoring the Molecular Structure of Crosslinked Polymers for Pervaporation Desalination. Nat. Commun. 2020, 11, 1461. [Google Scholar] [CrossRef] [PubMed]
- Slater, C.S.; Schurmann, T.; MacMillian, J.; Zimarowski, A. Separation of Diacteone Alcohol-Water Mixtures by Membrane Pervaporation. Sep. Sci. Technol. 2006, 41, 2733–2753. [Google Scholar] [CrossRef]
- Prihatiningtyas, I.; Gebreslase, G.A.; Van der Bruggen, B. Incorporation of Al2O3 into Cellulose Triacetate Membranes to Enhance the Performance of Pervaporation for Desalination of Hypersaline Solutions. Desalination 2020, 474, 114198. [Google Scholar] [CrossRef]
- Wang, Q.; Li, N.; Bolto, B.; Hoang, M.; Xie, Z. Desalination by Pervaporation: A Review. Desalination 2016, 387, 46–60. [Google Scholar] [CrossRef]
- Xu, G.-R.; Wang, J.-N.; Li, C.-J. Strategies for Improving the Performance of the Polyamide Thin Film Composite (PA-TFC) Reverse Osmosis (RO) Membranes: Surface Modifications and Nanoparticles Incorporations. Desalination 2013, 328, 83–100. [Google Scholar] [CrossRef]
- Li, L.; Hou, J.; Ye, Y.; Mansouri, J.; Chen, V. Composite PVA/PVDF Pervaporation Membrane for Concentrated Brine Desalination: Salt Rejection, Membrane Fouling and Defect Control. Desalination 2017, 422, 49–58. [Google Scholar] [CrossRef]
- Zhao, P.; Xue, Y.; Zhang, R.; Cao, B.; Li, P. Fabrication of Pervaporation Desalination Membranes with Excellent Chemical Resistance for Chemical Washing. J. Membr. Sci. 2020, 611, 118367. [Google Scholar] [CrossRef]
- Alaei Shahmirzadi, M.A.; Kargari, A. Nanocomposite Membranes. In Emerging Technologies for Sustainable Desalination Handbook; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128158180. [Google Scholar]
- Prihatiningtyas, I.; Li, Y.; Hartanto, Y.; Vananroye, A.; Coenen, N.; Van der Bruggen, B. Effect of Solvent on the Morphology and Performance of Cellulose Triacetate Membrane/Cellulose Nanocrystal Nanocomposite Pervaporation Desalination Membranes. Chem. Eng. J. 2020, 388, 124216. [Google Scholar] [CrossRef]
- Chung, T.-S.; Zhang, S.; Wang, K.Y.; Su, J.; Ling, M.M. Forward Osmosis Processes: Yesterday, Today and Tomorrow. Desalination 2012, 287, 78–81. [Google Scholar] [CrossRef]
- Phuntsho, S.; Kim, J.E.; Hong, S.; Ghaffour, N.; Leiknes, T.O.; Choi, J.Y.; Shon, H.K. A Closed-Loop Forward Osmosis-Nanofiltration Hybrid System: Understanding Process Implications through Full-Scale Simulation. Desalination 2017, 421, 169–178. [Google Scholar] [CrossRef]
- Butler, E.; Silva, A.; Horton, K.; Rom, Z.; Chwatko, M.; Havasov, A.; McCutcheon, J.R. Point of Use Water Treatment with Forward Osmosis for Emergency Relief. Desalination 2013, 312, 23–30. [Google Scholar] [CrossRef]
- Kim, J.E.; Phuntsho, S.; Chekli, L.; Hong, S.; Ghaffour, N.; Leiknes, T.O.; Choi, J.Y.; Shon, H.K. Environmental and Economic Impacts of Fertilizer Drawn Forward Osmosis and Nanofiltration Hybrid System. Desalination 2017, 416, 76–85. [Google Scholar] [CrossRef]
- Kim, S.-B.; Paudel, S.; Seo, G.T. Forward Osmosis Membrane Filtration for Microalgae Harvesting Cultivated in Sewage Effluent. Environ. Eng. Res. 2015, 20, 99–104. [Google Scholar] [CrossRef]
- Shaffer, D.L.; Werber, J.R.; Jaramillo, H.; Lin, S.; Elimelech, M. Forward Osmosis: Where Are We Now? Desalination 2015, 356, 271–284. [Google Scholar] [CrossRef]
- Kasaeian, A.; Rajaee, F.; Yan, W.-M. Osmotic Desalination by Solar Energy: A Critical Review. Renew. Energy 2019, 134, 1473–1490. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Chen, S.-S.; Nguyen, N.C.; Ngo, H.H.; Guo, W.; Li, C.-W. Exploring an Innovative Surfactant and Phosphate-Based Draw Solution for Forward Osmosis Desalination. J. Membr. Sci. 2015, 489, 212–219. [Google Scholar] [CrossRef]
- Hoyer, M.; Haseneder, R.; Repke, J.-U. Development of a Hybrid Water Treatment Process Using Forward Osmosis with Thermal Regeneration of a Surfactant Draw Solution. Desalination Water Treat. 2016, 57, 28670–28683. [Google Scholar] [CrossRef]
- Khayet, M.; Sanmartino, J.A.; Essalhi, M.; García-Payo, M.C.; Hilal, N. Modeling and Optimization of a Solar Forward Osmosis Pilot Plant by Response Surface Methodology. Sol. Energy 2016, 137, 290–302. [Google Scholar] [CrossRef]
- Ghaffour, N.; Lattemann, S.; Missimer, T.; Ng, K.C.; Sinha, S.; Amy, G. Renewable Energy-Driven Innovative Energy-Efficient Desalination Technologies. Appl. Energy 2014, 136, 1155–1165. [Google Scholar] [CrossRef]
- Khaydarov, R.A.; Khaydarov, R.R. Solar Powered Direct Osmosis Desalination. Desalination 2007, 217, 225–232. [Google Scholar] [CrossRef]
- Mohammadifakhr, M.; de Grooth, J.; Roesink, H.D.W.; Kemperman, A.J.B. Forward Osmosis: A Critical Review. Processes 2020, 8, 404. [Google Scholar] [CrossRef]
- Blandin, G.; Verliefde, A.; Comas, J.; Rodriguez-Roda, I.; Le-Clech, P. Efficiently Combining Water Reuse and Desalination through Forward Osmosis—Reverse Osmosis (FO-RO) Hybrids: A Critical Review. Membranes 2016, 6, 37. [Google Scholar] [CrossRef]
- Naim, M.M.; El Batouti, M.; Elewa, M.M. Novel Heterogeneous Cellulose-Based Ion-Exchange Membranes for Electrodialysis. Polym. Bull. 2022, 79, 9753–9777. [Google Scholar] [CrossRef]
- Bose, P.; Kim, J. Spray-Coated PDA-Wrapped Carboxylic CNT/PES Membrane to Augment Fouling Mitigation, Organic Removal, and Membrane Stability in Electrochemical Membrane Filtration. Appl. Surf. Sci. 2024, 676, 160980. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmed, M.; Ali, A.; Wani, T.A.; Khalid, K.; Ali, I. Effect of the Polyelectrolyte Multilayers’ Charge on Water Splitting, Fluxes of Ions, Selectivities and Current Efficiencies in Ion Transport through Membranes. Desalination 2024, 587, 117925. [Google Scholar] [CrossRef]
- Alabi, A.; AlHajaj, A.; Cseri, L.; Szekely, G.; Budd, P.; Zou, L. Review of Nanomaterials-Assisted Ion Exchange Membranes for Electromembrane Desalination. NPJ Clean. Water 2018, 1, 10. [Google Scholar] [CrossRef]
- Al-Amshawee, S.; Yunus, M.Y.B.M.; Azoddein, A.A.M.; Hassell, D.G.; Dakhil, I.H.; Hasan, H.A. Electrodialysis Desalination for Water and Wastewater: A Review. Chem. Eng. J. 2020, 380, 122231. [Google Scholar] [CrossRef]
- Valero, F.; Barceló, A.; Arbós, R. Electrodialysis Technology: Theory and Applications. In Desalination, Trends and Technologies; BoD–Books on Demand: Norderstedt, Germany, 2011; Volume 28, pp. 3–20. ISBN 9789533073118. [Google Scholar]
- Veza, J.M.; Peate, B.; Castellano, F. Electrodialysis Desalination Designed for Wind Energy (on-Grid Tests). Desalination 2001, 141, 53–61. [Google Scholar] [CrossRef]
- Veza, J.M.; Penate, B.; Castellano, F. Electrodialysis Desalination Designed for Off-Grid Wind Energy. Desalination 2004, 160, 211–221. [Google Scholar] [CrossRef]
- Ishimaru, N. Solar Photovoltaic Desalination of Brackish Water in Remote Areas by Electrodialysis. Desalination 1994, 98, 485–493. [Google Scholar] [CrossRef]
- Cournoyer, A.; Bazinet, L. Electrodialysis Processes an Answer to Industrial Sustainability: Toward the Concept of Eco-Circular Economy?—A Review. Membranes 2023, 13, 205. [Google Scholar] [CrossRef] [PubMed]
- Kotoka, F.; Merino-Garcia, I.; Velizarov, S. Surface Modifications of Anion Exchange Membranes for an Improved Reverse Electrodialysis Process Performance: A Review. Membranes 2020, 10, 160. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, M.; Bi, J.; Guo, X.; Wang, S.; Liu, J.; Shi, Y.; Zhao, Y. Process Intensification of the Electrodialysis Metathesis for Calcium Bromide Preparation: Effects of Key Influencing Factors and Phenomena of Water Migration. Desalination 2024, 585, 117734. [Google Scholar] [CrossRef]
- Skuse, C.; Gallego-Schmid, A.; Azapagic, A.; Gorgojo, P. Can Emerging Membrane-Based Desalination Technologies Replace Reverse Osmosis? Desalination 2021, 500, 114844. [Google Scholar] [CrossRef]
- Kabir, M.M.; Sabur, G.M.; Akter, M.M.; Nam, S.Y.; Im, K.S.; Tijing, L.; Shon, H.K. Electrodialysis Desalination, Resource and Energy Recovery from Water Industries for a Circular Economy. Desalination 2024, 569, 117041. [Google Scholar] [CrossRef]
- Jin, D.; Xi, R.; Xu, S.; Wang, P.; Wu, X. Numerical Simulation of Salinity Gradient Power Generation Using Reverse Electrodialysis. Desalination 2021, 512, 115132. [Google Scholar] [CrossRef]
- Roldan-Carvajal, M.; Vallejo-Castaño, S.; Álvarez-Silva, O.; Bernal-García, S.; Arango-Aramburo, S.; Sánchez-Sáenz, C.I.; Osorio, A.F. Salinity Gradient Power by Reverse Electrodialysis: A Multidisciplinary Assessment in the Colombian Context. Desalination 2021, 503, 114933. [Google Scholar] [CrossRef]
- Hossen, E.H.; Gobetz, Z.E.; Kingsbury, R.S.; Liu, F.; Palko, H.C.; Dubbs, L.L.; Coronell, O.; Call, D.F. Temporal Variation of Power Production via Reverse Electrodialysis Using Coastal North Carolina Waters and Its Correlation to Temperature and Conductivity. Desalination 2020, 491, 114562. [Google Scholar] [CrossRef]
- Luo, F.; Wang, Y.; Jiang, C.; Wu, B.; Feng, H.; Xu, T. A Power Free Electrodialysis (PFED) for Desalination. Desalination 2017, 404, 138–146. [Google Scholar] [CrossRef]
- Jang, J.; Kang, Y.; Han, J.-H.; Jang, K.; Kim, C.-M.; Kim, I.S. Developments and Future Prospects of Reverse Electrodialysis for Salinity Gradient Power Generation: Influence of Ion Exchange Membranes and Electrodes. Desalination 2020, 491, 114540. [Google Scholar] [CrossRef]
- Alhéritière, C.; Ernst, W.R.; Davis, T.A. Metathesis of Magnesium and Sodium Salt Systems by Electrodialysis. Desalination 1998, 115, 189–198. [Google Scholar] [CrossRef]
- Jaroszek, H.; Lis, A.; Dydo, P. Transport of Impurities and Water during Potassium Nitrate Synthesis by Electrodialysis Metathesis. Sep. Purif. Technol. 2016, 158, 87–93. [Google Scholar] [CrossRef]
- Sharma, P.P.; Gahlot, S.; Rajput, A.; Patidar, R.; Kulshrestha, V. Efficient and Cost Effective Way for the Conversion of Potassium Nitrate from Potassium Chloride Using Electrodialysis. ACS Sustain. Chem. Eng. 2016, 4, 3220–3227. [Google Scholar] [CrossRef]
- Haerens, K.; De Vreese, P.; Matthijs, E.; Pinoy, L.; Binnemans, K.; Van der Bruggen, B. Production of Ionic Liquids by Electrodialysis. Sep. Purif. Technol. 2012, 97, 90–95. [Google Scholar] [CrossRef]
- Bond, R. Demonstration of a New Electrodialysis Technology to Reduce Energy Required for Salinity Management: Final Project Report; California Energy Commission, Energy Research and Development Division: Sacramento, CA, USA, 2015.
- Van Nunen, J.; Panicot, P.A. Electrodialysis Metathesis Hybrid Technology Scale up Simulations to Increase Brackish Water Reverse Osmosis Recovery to 98–99%. In Proceedings of the XII Congreso intenacional Aedyr, Toledo, Spain, 23–25 October 2018. [Google Scholar]
- Chen, T.; Bi, J.; Sun, M.; Liu, J.; Yuan, J.; Zhao, Y.; Ji, Z. Electrodialysis Metathesis for High-Value Resource Conversion and Recovery: From Sustainable Applications to Future Prospects. Chem. Eng. J. 2023, 473, 145299. [Google Scholar] [CrossRef]
- Al-Shammiri, M.; Safar, M. Multi-Effect Distillation Plants: State of the Art. Desalination 1999, 126, 45–59. [Google Scholar] [CrossRef]
- Shamet, O.; Antar, M. Mechanical Vapor Compression Desalination Technology—A Review. Renew. Sustain. Energy Rev. 2023, 187, 113757. [Google Scholar] [CrossRef]
- Habib, S.M.; Hamed, A.; Youssef, A.Y.; Kassem, M.; Hanafi, A. Dynamic Modeling and Simulation of the Forward Feed MED-TVC Desalination Plant. J. Adv. Res. Fluid Mech. Therm. Sci. 2022, 92, 190–211. [Google Scholar] [CrossRef]
- Elsayed, M.L.; Mesalhy, O.; Mohammed, R.H.; Chow, L.C. Transient and Thermo-Economic Analysis of MED-MVC Desalination System. Energy 2019, 167, 283–296. [Google Scholar] [CrossRef]
- Chung, J.; Kim, J.; Ou, X.; Horstmeyer, R.; Yang, C. Simultaneous Fluorescence and High-Resolution Bright-Field Imaging with Aberration Correction over a Wide Field-of-View with Fourier Ptychographic Microscopy (FPM) (Conference Presentation). In Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXIII; Brown, T.G., Cogswell, C.J., Wilson, T., Eds.; SPIE: Bellingham, DC, USA, 2016; p. 18. [Google Scholar]
- Alarcón-Padilla, D.-C.; Blanco-Gálvez, J.; García-Rodríguez, L.; Gernjak, W.; Malato-Rodríguez, S. First Experimental Results of a New Hybrid Solar/Gas Multi-Effect Distillation System: The AQUASOL Project. Desalination 2008, 220, 619–625. [Google Scholar] [CrossRef]
- Palenzuela, P.; Hassan, A.S.; Zaragoza, G.; Alarcón-Padilla, D.-C. Steady State Model for Multi-Effect Distillation Case Study: Plataforma Solar de Almería MED Pilot Plant. Desalination 2014, 337, 31–42. [Google Scholar] [CrossRef]
- Zejli, D.; Ouammi, A.; Sacile, R.; Dagdougui, H.; Elmidaoui, A. An Optimization Model for a Mechanical Vapor Compression Desalination Plant Driven by a Wind/PV Hybrid System. Appl. Energy 2011, 88, 4042–4054. [Google Scholar] [CrossRef]
- Farahat, M.A.; Fath, H.E.S.; El-Sharkawy, I.I.; Ookawara, S.; Ahmed, M. Energy/Exergy Analysis of Solar Driven Mechanical Vapor Compression Desalination System with Nano-Filtration Pretreatment. Desalination 2021, 509, 115078. [Google Scholar] [CrossRef]
- Ma, Q.; Lu, H. Wind Energy Technologies Integrated with Desalination Systems: Review and State-of-the-Art. Desalination 2011, 277, 274–280. [Google Scholar] [CrossRef]
- Kaunga, D.; Patel, R.; Mujtaba, I.M. Humidification-Dehumidification Desalination Process: Performance Evaluation and Improvement through Experimental and Numerical Methods. Therm. Sci. Eng. Prog. 2022, 27, 101159. [Google Scholar] [CrossRef]
- Giwa, A.; Akther, N.; Housani, A.A.; Haris, S.; Hasan, S.W. Recent Advances in Humidification Dehumidification (HDH) Desalination Processes: Improved Designs and Productivity. Renew. Sustain. Energy Rev. 2016, 57, 929–944. [Google Scholar] [CrossRef]
- de Carvalho, M.D.; dos Reis Coimbra, J.S.; Lemos, T.S.M.; Bellido, J.D.A.; de Oliveira Siqueira, A.M. A Review of Humidification–Dehumidification Desalination Systems. Int. J. Res. Granthaalayah 2020, 8, 290–311. [Google Scholar] [CrossRef]
- Yadav, S.; Sudhakar, K. Different Domestic Designs of Solar Stills: A Review. Renew. Sustain. Energy Rev. 2015, 47, 718–731. [Google Scholar] [CrossRef]
- Panchal, H.; Mohan, I. Various Methods Applied to Solar Still for Enhancement of Distillate Output. Desalination 2017, 415, 76–89. [Google Scholar] [CrossRef]
- Alaian, W.M.; Elnegiry, E.A.; Hamed, A.M. Experimental Investigation on the Performance of Solar Still Augmented with Pin-Finned Wick. Desalination 2016, 379, 10–15. [Google Scholar] [CrossRef]
- Sharshir, S.W.; Salman, M.; El-Behery, S.M.; Halim, M.A.; Abdelaziz, G.B. Enhancement of Solar Still Performance via Wet Wick, Different Aspect Ratios, Cover Cooling, and Reflectors. Int. J. Energy Environ. Eng. 2021, 12, 517–530. [Google Scholar] [CrossRef]
- Rajaseenivasan, T.; Tinnokesh, A.P.; Kumar, G.R.; Srithar, K. Glass Basin Solar Still with Integrated Preheated Water Supply—Theoretical and Experimental Investigation. Desalination 2016, 398, 214–221. [Google Scholar] [CrossRef]
- Kannan, R.; Selvaganesan, C.; Vignesh, M.; Babu, B.R.; Fuentes, M.; Vivar, M.; Skryabin, I.; Srithar, K. Solar Still with Vapor Adsorption Basin: Performance Analysis. Renew. Energy 2014, 62, 258–264. [Google Scholar] [CrossRef]
- Ansari, O.; Asbik, M.; Bah, A.; Arbaoui, A.; Khmou, A. Desalination of the Brackish Water Using a Passive Solar Still with a Heat Energy Storage System. Desalination 2013, 324, 10–20. [Google Scholar] [CrossRef]
- Rajaseenivasan, T.; Kalidasa Murugavel, K.; Elango, T. Performance and Exergy Analysis of a Double-Basin Solar Still with Different Materials in Basin. Desalination Water Treat. 2015, 55, 1786–1794. [Google Scholar] [CrossRef]
- Omara, Z.M.; Eltawil, M.A. Hybrid of Solar Dish Concentrator, New Boiler and Simple Solar Collector for Brackish Water Desalination. Desalination 2013, 326, 62–68. [Google Scholar] [CrossRef]
- Omara, Z.M.; Eltawil, M.A.; ElNashar, E.S.A. A New Hybrid Desalination System Using Wicks/Solar Still and Evacuated Solar Water Heater. Desalination 2013, 325, 56–64. [Google Scholar] [CrossRef]
- Srithar, K.; Rajaseenivasan, T.; Karthik, N.; Periyannan, M.; Gowtham, M. Stand Alone Triple Basin Solar Desalination System with Cover Cooling and Parabolic Dish Concentrator. Renew. Energy 2016, 90, 157–165. [Google Scholar] [CrossRef]
- Rajaseenivasan, T.; Elango, T.; Kalidasa Murugavel, K. Comparative Study of Double Basin and Single Basin Solar Stills. Desalination 2013, 309, 27–31. [Google Scholar] [CrossRef]
- Rajaseenivasan, T.; Kalidasa Murugavel, K. Theoretical and Experimental Investigation on Double Basin Double Slope Solar Still. Desalination 2013, 319, 25–32. [Google Scholar] [CrossRef]
- Rahbar, N.; Esfahani, J.A. Experimental Study of a Novel Portable Solar Still by Utilizing the Heatpipe and Thermoelectric Module. Desalination 2012, 284, 55–61. [Google Scholar] [CrossRef]
- Rahbar, N.; Esfahani, J.A.; Asadi, A. An Experimental Investigation on Productivity and Performance of a New Improved Design Portable Asymmetrical Solar Still Utilizing Thermoelectric Modules. Energy Convers. Manag. 2016, 118, 55–62. [Google Scholar] [CrossRef]
- Kaviti, A.K.; Teja, M.; Madhukar, O.; Teja, P.B.; Aashish, V.; Gupta, G.S.; Sivaram, A.; Sikarwar, V.S. Productivity Augmentation of Solar Stills by Coupled Copper Tubes and Parabolic Fins. Energies 2023, 16, 6606. [Google Scholar] [CrossRef]
- Esfahani, J.A.; Rahbar, N.; Lavvaf, M. Utilization of Thermoelectric Cooling in a Portable Active Solar Still—An Experimental Study on Winter Days. Desalination 2011, 269, 198–205. [Google Scholar] [CrossRef]
- Rahbar, N.; Esfahani, J.A.; Fotouhi-Bafghi, E. Estimation of Convective Heat Transfer Coefficient and Water-Productivity in a Tubular Solar Still—CFD Simulation and Theoretical Analysis. Sol. Energy 2015, 113, 313–323. [Google Scholar] [CrossRef]
- Rashidi, S.; Bovand, M.; Esfahani, J.A. Optimization of Partitioning inside a Single Slope Solar Still for Performance Improvement. Desalination 2016, 395, 79–91. [Google Scholar] [CrossRef]
- Mostafa, M.A.; El-Algouz, S.A. Enhancement of the Performance of Stepped Solar Still Using Humidification-Dehumidification Processes. Nat. Sci. 2013, 11, 88–98. [Google Scholar]
- Rajaseenivasan, T.; Srithar, K. Potential of a Dual Purpose Solar Collector on Humidification Dehumidification Desalination System. Desalination 2017, 404, 35–40. [Google Scholar] [CrossRef]
- Kabeel, A.E.; El-Said, E.M.S.; Abdulaziz, M. Computational Fluid Dynamic as a Tool for Solar Still Performance Analysis and Design Development: A Review. Desalination Water Treat. 2019, 159, 200–213. [Google Scholar] [CrossRef]
- Rashidi, S.; Esfahani, J.A.; Rashidi, A. A Review on the Applications of Porous Materials in Solar Energy Systems. Renew. Sustain. Energy Rev. 2017, 73, 1198–1210. [Google Scholar] [CrossRef]
- Sharshir, S.W.; Yang, N.; Peng, G.; Kabeel, A.E. Factors Affecting Solar Stills Productivity and Improvement Techniques: A Detailed Review. Appl. Therm. Eng. 2016, 100, 267–284. [Google Scholar] [CrossRef]
- Kandeal, A.W.; El-Shafai, N.M.; Abdo, M.R.; Thakur, A.K.; El-Mehasseb, I.M.; Maher, I.; Rashad, M.; Kabeel, A.E.; Yang, N.; Sharshir, S.W. Improved Thermo-Economic Performance of Solar Desalination via Copper Chips, Nanofluid, and Nano-Based Phase Change Material. Sol. Energy 2021, 224, 1313–1325. [Google Scholar] [CrossRef]
- Peng, G.; Sharshir, S.W.; Wang, Y.; An, M.; Ma, D.; Zang, J.; Kabeel, A.E.; Yang, N. Potential and Challenges of Improving Solar Still by Micro/Nano-Particles and Porous Materials—A Review. J. Clean. Prod. 2021, 311, 127432. [Google Scholar] [CrossRef]
- Sharshir, S.W.; Ismail, M.; Kandeal, A.W.; Baz, F.B.; Eldesoukey, A.; Younes, M.M. Improving Thermal, Economic, and Environmental Performance of Solar Still Using Floating Coal, Cotton Fabric, and Carbon Black Nanoparticles. Sustain. Energy Technol. Assess. 2021, 48, 101563. [Google Scholar] [CrossRef]
- Sharshir, S.W.; Hamada, M.A.; Kandeal, A.W.; El-Said, E.M.S.; Mimi Elsaid, A.; Rashad, M.; Abdelaziz, G.B. Augmented Performance of Tubular Solar Still Integrated with Cost-Effective Nano-Based Mushrooms. Sol. Energy 2021, 228, 27–37. [Google Scholar] [CrossRef]
- Abdelaziz, G.B.; Algazzar, A.M.; El-Said, E.M.S.; Elsaid, A.M.; Sharshir, S.W.; Kabeel, A.E.; El-Behery, S.M. Performance Enhancement of Tubular Solar Still Using Nano-Enhanced Energy Storage Material Integrated with v-Corrugated Aluminum Basin, Wick, and Nanofluid. J. Energy Storage 2021, 41, 102933. [Google Scholar] [CrossRef]
- Essa, F.A.; Omara, Z.M.; Abdullah, A.S.; Kabeel, A.E.; Abdelaziz, G.B. Enhancing the Solar Still Performance via Rotating Wick Belt and Quantum Dots Nanofluid. Case Stud. Therm. Eng. 2021, 27, 101222. [Google Scholar] [CrossRef]
- Kaviti, A.K.; Akkala, S.R.; Ali, M.A.; Anusha, P.; Sikarwar, V.S. Performance Improvement of Solar Desalination System Based on CeO2-MWCNT Hybrid Nanofluid. Sustainability 2023, 15, 4268. [Google Scholar] [CrossRef]
- Prakash, O.; Bhushan, B.; Kumar, A.; Ahmed, A. Thermal Analysis of Domestic Type Single Slope–Basin Solar Still under Two Different Water Depths. Mater. Today Proc. 2021, 46, 5482–5489. [Google Scholar] [CrossRef]
- Li, X.; Yuan, G.; Wang, Z.; Li, H.; Xu, Z. Experimental Study on a Humidification and Dehumidification Desalination System of Solar Air Heater with Evacuated Tubes. Desalination 2014, 351, 1–8. [Google Scholar] [CrossRef]
- Kaushal, A. Varun Solar Stills: A Review. Renew. Sustain. Energy Rev. 2010, 14, 446–453. [Google Scholar] [CrossRef]
- Dsilva Winfred Rufuss, D.; Iniyan, S.; Suganthi, L.; Davies, P.A. Solar Stills: A Comprehensive Review of Designs, Performance and Material Advances. Renew. Sustain. Energy Rev. 2016, 63, 464–496. [Google Scholar] [CrossRef]
- Farshchi Tabrizi, F.; Khosravi, M.; Shirzaei Sani, I. Experimental Study of a Cascade Solar Still Coupled with a Humidification-Dehumidification System. Energy Convers. Manag. 2016, 115, 80–88. [Google Scholar] [CrossRef]
- Tyagi, S.K.; Kamboj, S.; Himanshu; Tyagi, N.; Narayanan, R.; Tyagi, V.V. Technological Advancements in Jaggery-Making Processes and Emission Reduction Potential via Clean Combustion for Sustainable Jaggery Production: An Overview. J. Environ. Manag. 2022, 301, 113792. [Google Scholar] [CrossRef]
- Kumar, S.; Prakash, O. Improving the Single-Slope Solar Still Performance Using Solar Air Heater with Phase Change Materials. Energies 2022, 15, 8013. [Google Scholar] [CrossRef]
- Srithar, K.; Rajaseenivasan, T. Performance Analysis on a Solar Bubble Column Humidification Dehumidification Desalination System. Process Saf. Environ. Prot. 2017, 105, 41–50. [Google Scholar] [CrossRef]
- Rajaseenivasan, T.; Srithar, K. An Investigation into a Laboratory Scale Bubble Column Humidification Dehumidification Desalination System Powered by Biomass Energy. Energy Convers. Manag. 2017, 139, 232–244. [Google Scholar] [CrossRef]
- Kumar, D.; Pandey, A.; Prakash, O.; Kumar, A.; DevRoy, A. Simulation, Modeling, and Experimental Studies of Solar Distillation Systems. In Solar Desalination Technology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 149–166. ISBN 9789811368868. [Google Scholar]
- Spellman, F.R. Reverse Osmosis: A Guide for the Nonengineering Professional; CRC Press: Boca Raton, FL, USA, 2015; ISBN 1498727530. [Google Scholar]
- Fosberg, T.; Sweet, B. Using Evaporators to Achieve Zero Effluent at a BCTMP Pulp Mill. Environ. Prog. 1994, 13, 163–166. [Google Scholar] [CrossRef]
- Mickley, M. Survey of High-Recovery and Zero Liquid Discharge Technologies for Water Utilities; WateReuse Foundation: Winter Springs, FL, USA, 2008; ISBN 1934183083. [Google Scholar]
- Joel, J.A.E.; Krom, M.E.; Melvin, P. Line Concentrator System. U.S. Patent 2,812,385, 5 November 1957. [Google Scholar]
- Bostjancic, J.; Ludlum, R. Getting to Zero Discharge: How to Recycle That Last Bit of Really Bad Wastewater. In Proceedings of the International Water Conference, Engineers Society of Western Pennsylvania, Pittsburgh, PA, USA, 22–24 October 1996; Volume 57, pp. 290–295. [Google Scholar]
- Shaffer, D.L.; Arias Chavez, L.H.; Ben-Sasson, M.; Romero-Vargas Castrillón, S.; Yip, N.Y.; Elimelech, M. Desalination and Reuse of High-Salinity Shale Gas Produced Water: Drivers, Technologies, and Future Directions. Environ. Sci. Technol. 2013, 47, 9569–9583. [Google Scholar] [CrossRef]
- Stanford, B.D.; Leising, J.F.; Bond, R.G.; Snyder, S.A. Chapter 11 Inland Desalination: Current Practices, Environmental Implications, and Case Studies in Las Vegas, NV. Sustain. Sci. Eng. 2010, 2, 327–350. [Google Scholar]
- Seyed Sabour, S.M.J.; Ghorashi, B. A Comprehensive Review of Major Water Desalination Techniques and Mineral Extraction from Saline Water. Sep. Purif. Technol. 2024, 349, 127913. [Google Scholar] [CrossRef]
- Tillberg, F. ZLD-Systems—An Overview; Department of Energy Technology, Royal Institute of Technology, KTH Stockholm, Sweden 2004. Available online: https://silo.tips/download/zld-systems-an-overview (accessed on 3 October 2024).
- Bhadrachari, G.; Ahmad, M.; Alambi, R.K.; Thomas, J.P. Extraction of Commercially Valuable Mineral Salt from Reverse Osmosis Brine Using a Spray Dry Process. Environ. Eng. Res. 2023, 28, 220299. [Google Scholar] [CrossRef]
- Santoso, H.; Putra, D.E.; Angelina, G.; Hartanto, Y.; Witono, J.R.B.; Wanta, K.C. Brine Evaporation Modeling in WAIV System Using Penman, Priestley-Taylor, and Harbeck Models. J. Eng. Technol. Sci. 2022, 54, 1217–1228. [Google Scholar] [CrossRef]
- Ting, W.H.T.; Tan, I.A.W.; Salleh, S.F.; Abdul Wahab, N.; Atan, M.F.; Abdul Raman, A.A.; Kong, S.L.; Lam, L.S. Sustainable Saline Wastewater Treatment Using Eutectic Freeze Crystallization: Recent Advances, Challenges and Future Prospects. J. Environ. Chem. Eng. 2024, 12, 112919. [Google Scholar] [CrossRef]
- van der Ham, F.; Seckler, M.M.; Witkamp, G.J. Eutectic Freeze Crystallization in a New Apparatus: The Cooled Disk Column Crystallizer. Chem. Eng. Process. Process Intensif. 2004, 43, 161–167. [Google Scholar] [CrossRef]
- Vaessen, R.; Seckler, M.; Witkamp, G.J. Eutectic Freeze Crystallization with an Aqueous KNO 3−HNO 3 Solution in a 100-L Cooled-Disk Column Crystallizer. Ind. Eng. Chem. Res. 2003, 42, 4874–4880. [Google Scholar] [CrossRef]
- Lewis, A.E.; Nathoo, J.; Thomsen, K.; Kramer, H.J.; Witkamp, G.J.; Reddy, S.T.; Randall, D.G. Design of a Eutectic Freeze Crystallization Process for Multicomponent Waste Water Stream. Chem. Eng. Res. Des. 2010, 88, 1290–1296. [Google Scholar] [CrossRef]
- Peters, E.M.; Chivavava, J.; Rodriguez-Pascual, M.; Lewis, A.E. Effect of a Phosphonate Antiscalant during Eutectic Freeze Crystallization of a Sodium Sulfate Aqueous Stream. Ind. Eng. Chem. Res. 2016, 55, 9378–9386. [Google Scholar] [CrossRef]
- Leyland, D.; Chivavava, J.; Lewis, A.E. Investigations into Ice Scaling during Eutectic Freeze Crystallization of Brine Streams at Low Scraper Speeds and High Supersaturation. Sep. Purif. Technol. 2019, 220, 33–41. [Google Scholar] [CrossRef]
- Akbarkermani, M.; Genceli Güner, F.E. Eutectic Freeze Crystallization in the Boric Acid–Water System. Chem. Pap. 2023, 77, 5881–5891. [Google Scholar] [CrossRef]
- Randall, D.G.; Nathoo, J.; Lewis, A.E. A Case Study for Treating a Reverse Osmosis Brine Using Eutectic Freeze Crystallization—Approaching a Zero Waste Process. Desalination 2011, 266, 256–262. [Google Scholar] [CrossRef]
- Salvador Cob, S.; Genceli Güner, F.E.; Hofs, B.; van Spronsen, J.; Witkamp, G.J. Three Strategies to Treat Reverse Osmosis Brine and Cation Exchange Spent Regenerant to Increase System Recovery. Desalination 2014, 344, 36–47. [Google Scholar] [CrossRef]
- Oren, Y.; Korngold, E.; Daltrophe, N.; Messalem, R.; Volkman, Y.; Aronov, L.; Weismann, M.; Bouriakov, N.; Glueckstern, P.; Gilron, J. Pilot Studies on High Recovery BWRO-EDR for near Zero Liquid Discharge Approach. Desalination 2010, 261, 321–330. [Google Scholar] [CrossRef]
- Macedonio, F.; Katzir, L.; Geisma, N.; Simone, S.; Drioli, E.; Gilron, J. Wind-Aided Intensified EVaporation (WAIV) and Membrane Crystallizer (MCr) Integrated Brackish Water Desalination Process: Advantages and Drawbacks. Desalination 2011, 273, 127–135. [Google Scholar] [CrossRef]
- Gilron, J.; Ramon, E.; Assaf, N.; Kedem, O. Wind-Aided Intensified Evaporation (WAIV). In Current Trends and Future Developments on (Bio-) Membranes; Elsevier: Amsterdam, The Netherlands, 2019; pp. 215–241. ISBN 9780128135518. [Google Scholar]
- Abdelkareem, M.A.; El Haj Assad, M.; Sayed, E.T.; Soudan, B. Recent Progress in the Use of Renewable Energy Sources to Power Water Desalination Plants. Desalination 2018, 435, 97–113. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Bostani, M.; Rashidi, S.; Valipour, M.S. Challenges and Opportunities of Desalination with Renewable Energy Resources in Middle East Countries. Renew. Sustain. Energy Rev. 2023, 184, 113543. [Google Scholar] [CrossRef]
- Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. State-of-the-Art of Reverse Osmosis Desalination. Desalination 2007, 216, 1–76. [Google Scholar] [CrossRef]
Technology | Principle | Energy Type | Status | Merits | Demerits | Energy (kWh m−3) | Cost (USD 1 m−3) | Ref. |
---|---|---|---|---|---|---|---|---|
RO and NF | Membrane separation | Hydraulic pressure | Commercial | RO: It is optimal for desalinating high-salinity sources due to its superior salt rejection rates. NF: Provides reduced energy consumption and is ideal for brackish water treatment. | RO: Associated with elevated energy consumption and fouling issues. NF: Less efficient for very salty water and fails to attain the elevated purity levels of RO. | 2–6 | 0.75 | [6,41,42,44] |
MSF and MED | Evaporation and crystallisation | Thermal | Commercial | MSF: Proven technology, high-quality water output, long lifespan, handles high-salinity feedwater, thermal integration. MED: Lower energy consumption, higher energy efficiency, smaller footprint, lower maintenance costs, scalability for small to large applications. | MSF: Large footprint, scaling and corrosion, high energy consumption, high capital and operational costs. MED: Higher sensitivity to feedwater quality, lower water recovery rate, complexity of multi-effect systems, limited high-salinity tolerance. | 12.5–24 (MSF) 7.7–21 (MED) | 1.40 (MSF) 1.10 (MED) | [6,33,34,45,46] |
ED and EDR | Membrane separation and electrochemical | Electricity | Commercial | ED: Highly energy-efficient for low-salinity water, lower pressure requirements, higher water recovery rate (up to 90%), resilience to fouling, and highly selective in removing charged particles (ions). EDR: Automatic reversal for fouling prevention, extended membrane lifespan, high recovery rates, greater tolerance to variable feedwater quality, energy efficiency for low-salinity application. | ED: Not as energy-efficient for high-salinity water sources, such as seawater, high initial capital cost, brine disposal can be an environmental concern, scaling and fouling in high-hardness waters. EDR: Energy efficiency declines with high-salinity water, higher initial investment, brine disposal can be environmentally challenging, complex operation. | 7–15 | 0.85 | [47,48,49,50] |
HPRO | Membrane separation | Hydraulic pressure | Emerging | HPRO operates at much higher pressures (70–120 bar) than RO, allowing for higher water recovery rates from highly saline feedwater, energy efficiency improvements due to EDRs, compact system design, versatility in applications, and lower chemical usage. | Higher energy consumption, operational complexity, and maintenance costs, high initial capital costs, effective pre-treatment to manage fouling risks, complex operation and maintenance, and more concentrated than RO can pose additional environmental challenges. | 3–9 | 0.79 | [6,42,44] |
FO | Membrane separation | Osmotic pressure | Emerging | Low energy consumption, less fouling and scaling compared to RO membranes, high water recovery rates where high-quality water is not required, sustainable use of low-grade heat, minimal chemical use, and effective for high-salinity and challenging waters. | Complex draw solution recovery, lower water flux, limited standalone use, membranes are still under active development, limited commercial use, and challenging brine management. | 0.8–13 | 0.63 | [6,35,41,51] |
OARO | Membrane separation | Osmotic and hydraulic pressure | Emerging | Lower energy consumption for high-salinity feedwater, higher water recovery, the osmotic assistance in OARO reduces the hydraulic pressure on the membrane, which lowers the risk of scaling and fouling, suitable for ZLD, requires lower hydraulic pressures than RO, versatile use with different water sources. | The complexity of draw solution management, higher initial capital cost than RO, emerging technology with limited large-scale deployments, complex operation and maintenance, more complex to operate and maintain than RO due to the need for osmotic management, and uncertain long-term costs. | 6–19 | 2.40 | [6,43] |
MD | Membrane separation and Evaporation | Thermal | Emerging | Operates at low temperatures (40–90 °C), suitable for use with low-grade waste heat or RES, high salt rejection, producing nearly pure water, less energy-efficient than RO unless low-cost heat is available, modular and scalable design, can handle non-potable and contaminated water, effective for high-salinity water, such as RO brine or industrial effluents, less prone to fouling and scaling due to low operating pressures and temperatures. | Lower water flux and limited commercial availability, can lose efficiency due to temperature polarisation where the temperature difference between the feed and permeate sides decreases over time, membranes are susceptible to wetting, where liquid water penetrates the membrane pores, reducing the efficiency of the process, high initial capital cost, the concentrated brine byproduct can present an environmental and logistical challenges. | 39–67 | 1.17 | [6,36,46,52] |
MCr | Membrane separation and Crystallisation | Thermal | Emerging | Simultaneous water recovery and salt extraction, highly efficient for brine management, low energy requirements compared to thermal processes, selective crystallisation, integration with other technologies like MD, contributes to a circular economy and lessens the environmental impact of desalination. | High initial capital cost due to membrane and system complexity, requires precise control over crystallisation conditions, making operation complex, membrane wetting and durability issues, limited commercial application, energy intensity for crystallisation, brine complexity. | 39–73 | 1.24 | [6,36,39,53] |
EDM | Membrane separation and Electrochemical | Electricity | Emerging | High water recovery, typically 80–90%, ideal for water-scarce regions, high water recovery like ED and EDR, capable of handling high-salinity feedwater, low energy consumption for low-to-medium salinity waters, reduces the need for chemical additives compared to thermal desalination, lower scaling and fouling risk. | The setup cost for EDM systems is relatively high, particularly due to the specialized membranes and electrochemical cells used in the process, limited large-scale applications, complex operation and maintenance, energy intensity for high-salinity waters, IEM used in EDM are subject to wear and degradation over time. | 0.6–5.1 | 0.60 | [54] |
BC and BCr | Evaporation and crystallisation | Thermal | Commercial | BC: High water recovery (90–95%), reduces brine volume, moderate energy consumption, but more efficient when using low-grade heat sources, ideal for pre-treatment and reducing brine volume, scalable for large-scale industrial applications BCr: Complete water recovery (ZLD), producing solid salts, best for ZLD and salt recovery applications, full recovery of salts and minerals, produces solid salts, eliminating liquid waste. | BC: High capital cost for equipment and infrastructure, requires careful control of scaling and fouling, some resource recovery, but not as comprehensive as crystallisation, reduces brine volume but still produces concentrated liquid waste. BCr: Very high energy consumption due to evaporation, very high capital cost, especially for ZLD systems, scalable, but limited by high costs for very large capacities. | 15.86–26 (BC) 52–70 (BCr) | 1.11 (BC) 1.22 (BCr) | [6] |
SD | Crystallisation | Thermal | Commercial | Rapid drying process, often completed in seconds, wide range of applications, continuous operation, available in a wide range of sizes. | High energy demand for heating and atomisation, low thermal efficiency due to heat loss in exhaust gases, high initial capital investment and ongoing maintenance costs, requires significant floor space for large-scale operations, requires dust control systems to manage air pollution and dust generation. | 52–64 | - | [6] |
EFC | Crystallisation | Thermal | Emerging | Produces high-purity ice and salt crystals, suitable for reuse or sale, minimal chemical usage, reducing environmental impact and operational costs, scalable for small- and large-scale applications, lower environmental footprint, reduces liquid brine discharge. | High energy efficiency compared to thermal processes, high initial investment due to specialised low-temperature equipment, requires precise control over temperature and crystallisation processes, limited large-scale adoption, still in the emerging phase with fewer commercial examples. | 43.8–68.5 | 1.42 | [6,37,55,56] |
WAIV | Crystallisation | Electricity | Emerging | Low energy consumption, relies on natural wind energy for evaporation, environmentally friendly, minimal carbon footprint, suitable for small- and large-scale applications, simple to operate and maintain, requires vertical structures, reducing land use, ideal for arid, windy regions. | Less efficient in humid or low-wind areas, can concentrate brine but may not fully crystallize it, additional treatment may be required, limited large-scale commercial use, still in the emerging phase. | 0.3–1 | - | [6,40] |
Classification | Criteria | Merits | Demerits |
---|---|---|---|
Thermal energy storage (TES) | Sensible heat storage (SHS)• Liquid• Solid Latent heat storage (LHS) or phase change materials (PCM) Thermochemical energy storage (TCES) Pumped thermal energy storage (PTES) | Extremely effective, particularly when combined with renewable energy or waste heat sources, crucial for renewable energy systems, enabling the storage of solar and wind energy. Appropriate for heating, cooling, and power generating throughout industrial, commercial, and residential sectors. | Significant initial capital expenditure, particularly for extensive systems, Possibility of thermal dissipation over time, particularly in prolonged storage scenarios. It exhibits a lower energy density compared to batteries, necessitating higher storage capacity. Requires meticulous integration with current energy systems, hence raising design complexity. Consistent maintenance is necessary to guarantee efficiency and avert heat losses. It demands considerable space and is potentially restricted by geographical or spatial limitations. |
Mechanical energy storage (MES) | Pumped hydro energy storage (PHES) Gravity energy storage (GES) Compressed air energy storage (CAES) Flywheel energy storage (FES) | Elevated efficiency for flywheels (up to 90%); extended operating lifespan (20–50+ years) with little depreciation. Extensively scalable for substantial energy storage, particularly PHES and CAES. Increased environmental effect for PHES. Rapid reaction time, particularly for FES and PHES, optimal for grid stabilisation. Negligible energy dissipation over extended periods, suitable for long-term energy storage. | Reduced efficiency for CAES (40–60%). Demands certain geographical features for PHES and CAES, such as mountains and caverns. Inferior energy density relative to batteries, necessitates more storage space. Minimal environmental effect for FES and GES; substantial initial expenses, particularly for PHES and CAES. Demands routine upkeep for mobile components (e.g., FES) |
Chemical energy storage (CES) | Hydrogen energy storage Synthetic natural gas (SNG) Storage Solar fuel | Elevated energy density, particularly in batteries and hydrogen systems. Extensively scalable from minor consumer applications to grid-scale energy storage. Rapid reaction time, particularly in batteries for grid stabilisation and electric vehicles. Elevated efficiency for batteries (80–90%). Minimal environmental problems associated with renewable energy sources. Appropriate for short to medium-term storage; hydrogen is preferable for long-term storage. | Significant upfront expenses, especially for extensive battery and hydrogen systems, coupled with reduced efficiency for hydrogen (30–50%). Batteries have a finite lifespan, exhibiting performance deterioration as time progresses. Hazard of fire and detonation in battery and hydrogen systems. The recycling of batteries is intricate and not yet entirely efficient. Restricted access to essential battery materials, influenced by geopolitical issues |
Electrochemical energy storage (EcES) | Battery energy storage (BES)• Lead–acid• Lithium-ion• Nickel-Cadmium• Sodium-Sulphur • Sodium ion • Metal air• Solid-state batteries | Elevated energy density, particularly in lithium-ion and flow batteries. Rapid reaction, appropriate for situations necessitating immediate power. Extensively scalable from little devices to extensive grid-scale applications. Extended cycle longevity for several systems. Can be ecologically advantageous when utilising renewable resources. | Significant initial capital expenditures for battery systems, especially lithium-ion, may lead to deterioration over time. The potential for thermal runaway in lithium-ion batteries necessitates meticulous handling. Restricted efficacy during prolonged storage. The recycling procedures are complex and not yet fully refined. Dependence on scarce and perhaps geopolitically sensitive resources. |
Flow battery energy storage (FBES)• Vanadium redox battery (VRB) • Polysulfide bromide battery (PSB)• Zinc–bromine (ZnBr) battery | |||
Paper battery Flexible battery | |||
Electrical energy storage (ESS) | Electrostatic energy storage• Capacitors• Supercapacitors | ||
Magnetic energy storage• Superconducting magnetic energy storage (SMES) | Extremely elevated power density, particularly in supercapacitors and SMES. Remarkably rapid reaction time, suitable for situations necessitating immediate power. Extended cycle longevity, especially in capacitors and supercapacitors. Elevated round-trip efficiency (exceeding 90%), particularly in SMES systems. Minimal maintenance demands owing to uncomplicated design and absence of chemical interactions. Optimally designed for ephemeral storage (seconds to minutes). Extensively accessible for commercial use in supercapacitors. | Insufficient energy density, rendering them unsuitable for prolonged storage. Significant initial expenditure, particularly for SMES systems, restricted commercial implementation of SMES. Large-scale deployments of SMES systems may necessitate considerable area and require cryogenic cooling, hence increasing complexity and operational expenses. | |
Others | Hybrid energy storage |
RES Type | Production (m3 d−1) | Energy Consumed (kWh m−3) | Production Cost (USD m−3) | Ref. |
---|---|---|---|---|
Solar | 11.6 | 2.3 | 9 | [136] |
Wind | 24 | 6 | 2.96–6.47 | [137] |
Geothermal | 0.576 | 1.44 | 1.2 | [138] |
Tidal | 22.7 | 0.6 | [139] | |
Solar + wind | 5 | 4.8 | 3.8 | [140] |
RES-Desalination Technology | Energy Input kWhel m−3 + kJth kg−1 | Capacity m3 d−1 | Cost of Production USD m−3 |
---|---|---|---|
Solar MED | 1.5 + 100 | 1–100 | 3.12–7.8 |
Solar MD | 0 + <200 | 0.1–10 | 12.48–23.4 |
PV/RO | 0.5–5.0 + 0 | <100 | 7.8–18.72 |
PV/ED | 3.0–4.0 + 0 | <100 | 12.48–14.04 |
Wind/RO | 0.5–5.0 + 0 | 50–2000 | 4.68–10.92 |
Wind/MVC | 11–14 + 0 | <100 | 6.24–9.36 |
Technology | Capacity of Feed Water (m3 d−1) | Capacity of Production (m3 d−1) | Type of Feed Water | Max. Recovery (%) | Outlet Water Quality (ppm) | Energy Consumption | Cost of Water Production USD m−3 | |
---|---|---|---|---|---|---|---|---|
Electrical Energy kWh m−3 | Thermal Energy Kj kg−1 | |||||||
Solar stills | – | ≤100 | BW | 25 | 10 | – | – | 1.3–6.5 |
Solar HDH | 180–18,000 | 1–100 | BW | 25 | 10 | 1.5 | 29.6 | 2.6–6.5 |
MED with a solar pool | 600–30,000 | 20,000–200,000 | SW-BW | 25 | 10 | 1.5–2.5 | 230–390 | 0.71–0.89 |
MED with CSP | 600–30,000 | ≥5000 | SW-BW | 25 | 10 | 1.5–2.5 | 230–390 | 2.4–2.8 |
MSF | 50,000–70,000 | 20,000–75,000 | SW-BW | 22 | 10 | 4–6 | 190–390 | 0.56–1.75 |
RO with a solar pool | 10,000–320,000 | 20,000–200,000 | SW-BW | 42 | 400–500 | 3–6 | – | 0.45–1.72 |
RO with solar PV | Over 98,000 | ≤100 | SW-BW | 65 | 200–500 | 1.5–2.5 | – | 0.26–1.33 |
TVC | 10,000–35,000 | ≤100 | SW-BW | 25 | 10 | 1.5–2.5 | 145–390 | 0.87–0.95 |
MVC | 100–3000 | ≤100 | SW-BW | – | 10 | 6–12 | – | 2–2.6 |
ED with solar PV | ≥145,000 | ≤100 | BW | 90 | 150–500 | 2.64–5.5 | – | 0.6–1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elewa, M.M. Emerging and Conventional Water Desalination Technologies Powered by Renewable Energy and Energy Storage Systems toward Zero Liquid Discharge. Separations 2024, 11, 291. https://doi.org/10.3390/separations11100291
Elewa MM. Emerging and Conventional Water Desalination Technologies Powered by Renewable Energy and Energy Storage Systems toward Zero Liquid Discharge. Separations. 2024; 11(10):291. https://doi.org/10.3390/separations11100291
Chicago/Turabian StyleElewa, Mahmoud M. 2024. "Emerging and Conventional Water Desalination Technologies Powered by Renewable Energy and Energy Storage Systems toward Zero Liquid Discharge" Separations 11, no. 10: 291. https://doi.org/10.3390/separations11100291
APA StyleElewa, M. M. (2024). Emerging and Conventional Water Desalination Technologies Powered by Renewable Energy and Energy Storage Systems toward Zero Liquid Discharge. Separations, 11(10), 291. https://doi.org/10.3390/separations11100291