Sequential Separation of Essential Oil Components during Hydrodistillation of Azorean Cryptomeria japonica Foliage: Effects on Yield, Physical Properties, and Chemical Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Essential Oil Extraction and Fractionation by Hydrodistillation Method
2.3. Essential Oil Composition Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Az–CJF EO Extraction and Fractionation by HD Method
3.2. Yield, Hydrodistillation Rate (HDR), Density, and Colour of the Az–CJF EO and Its Fractions
3.3. Chemical Composition of the Az–CJF EO and Its Fractions
3.4. Kinetics Regression Models
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Arruda, F.; Lima, A.; Oliveira, L.; Rodrigues, T.; Janeiro, A.; Rosa, J.S.; Lima, E. Essential oil variability of Azorean Cryptomeria japonica leaves under different distillation methods, Part 2: Molluscicidal activity and brine shrimp lethality. Separations 2023, 10, 241. [Google Scholar] [CrossRef]
- Mizushina, Y.; Kuriyama, I. Cedar (Cryptomeria japonica) Oils. In Essential Oils in Food Preservation, Flavor and Safety, 1st ed.; Preedy, V.R., Ed.; Academic Press: London, UK, 2016; pp. 317–324. [Google Scholar]
- Lima, A.; Arruda, F.; Janeiro, A.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Biological activities of organic extracts and specialized metabolites from different parts of Cryptomeria japonica (Cupressaceae)—A critical review. Phytochemistry 2023, 206, 113520. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Variations in essential oil chemical composition and biological activities of Cryptomeria japonica (Thunb. ex L.f.) D. Don from different geographical origins—A critical review. Appl. Sci. 2021, 11, 11097. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oil—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Brown, M.E. Survivors over six millennia: Essential oils. Pharm. Hist. 2014, 44, 13–18. [Google Scholar]
- Chakravarty, I.; Parmar, V.M.; Mandavgane, S.A. Current Trends in Essential Oil (EO) production. Biomass Conv. Bioref. 2021. [Google Scholar] [CrossRef]
- Lizarraga-Valderrama, L.R. Effects of essential oils on central nervous system: Focus on mental health. Phytother. Res. 2021, 2, 657–679. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Sahoo, S.; Tripathy, K.; Singh, Y.D.; Sarma, M.K.; Babu, P.J.; Singh, M.C. Essential oils and their pharmacotherapeutics applications in human diseases. Adv. Tradit. Med. 2020, 22, 1–15. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Sattayakhom, A.; Wichit, S.; Koomhin, P. The effects of essential oils on the nervous system: A scoping review. Molecules 2023, 28, 3771. [Google Scholar] [CrossRef] [PubMed]
- Sousa, V.I.; Parente, J.F.; Marques, J.F.; Forte, M.A.; Tavares, C.J. Microencapsulation of essential oils: A review. Polymers 2022, 14, 1730. [Google Scholar] [CrossRef]
- Feyaerts, A.F.; Luyten, W.; Van Dijck, P. Striking essential oil: Tapping into a largely unexplored source for drug discovery. Sci. Rep. 2020, 10, 2867. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Figueiredo, A.C.; Lima, E. Essential oils from different parts of Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don (Cupressaceae): Comparison of the yields, chemical compositions, and biological properties. Appl. Sci. 2023, 13, 8375. [Google Scholar] [CrossRef]
- Mancianti, F.; Ebani, V.V. Biological activity of essential oils. Molecules 2020, 25, 678. [Google Scholar] [CrossRef] [PubMed]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agents—Myth or real alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.S.; Yiap, B.C.; Ping, H.C.; Lim, S.H. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe. European Directorate for the Quality of Medicines. In European Pharmacopoeia, 7th ed.; Council of Europe: Strasbourg, France, 2010; pp. 673–677. [Google Scholar]
- ISO 9235; Aromatic Natural Raw Materials—Vocabulary. ISO: Geneva, Switzerland, 2013.
- Arruda, F.; Rosa, J.S.; Rodrigues, A.; Oliveira, L.; Lima, A.; Barroso, J.G.; Lima, E. Essential oil variability of Azorean Cryptomeria japonica leaves under different distillation methods, Part 1: Color, yield and chemical composition analysis. Appl. Sci. 2022, 12, 452. [Google Scholar] [CrossRef]
- ISO 7609; Essential Oils—Analysis by Gas Chromatography on Capillary Columns—General Method. ISO: Geneva, Switzerland, 1985.
- Furtado, R.; Baptista, J.; Lima, E.; Paiva, L.; Barroso, J.G.; Rosa, J.S.; Oliveira, L. Chemical composition and biological activities of Laurus essential oils from different Macaronesian Islands. Biochem. Syst. Ecol. 2014, 55, 333–341. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Bates, D.M.; Watts, D.G. Nonlinear Regression and Its Applications; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Moiteiro, C.; Esteves, T.; Ramalho, L.; Rojas, R.; Alvarez, S.; Zacchino, S.; Bragança, H. Essential oil characterization of two Azorean Cryptomeria japonica populations and their biological evaluations. Nat. Prod. Commun. 2013, 8, 1785–1790. [Google Scholar] [CrossRef]
- Semerdjieva, I.B.; Shiwakoti, S.; Cantrell, C.L.; Zheljazkov, V.D.; Astatkie, T.; Schlegel, V.; Radoukova, T. Hydrodistillation extraction kinetics regression models for essential oil yield and composition in Juniperus virginiana, J. excelsa, and J. sabina. Molecules 2019, 24, 986. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Semerdjieva, I.B.; Dincheva, I.; Kacaniova, M.; Astatkie, T.; Radoukova, T.; Schlegel, V. Antimicrobial and antioxidant activity of Juniper galbuli essential oil constituents eluted at different times. Ind. Crops Prod. 2017, 109, 529–537. [Google Scholar] [CrossRef]
- Semerdjieva, I.B.; Radoukova, T.; Cantrell, C.L.; Astatkie, T.; Kacaniova, M.; Borisova, D.; Zheljazkov, V.D. Essential oil composition of Pinus heldreichii Christ., P. peuce Griseb., and P. mugo Turra as a function of hydrodistillation time and evaluation of its antimicrobial activity. Ind. Crops Prod. 2022, 187, 115484. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Moiteiro, C.; Rodrigues, M.C.S.M.; Almeida, A.J.R.M. Essential oil composition from Cryptomeria japonica D. Don grown in Azores: Biomass valorization from forest management. Nat. Prod. Commun. 2021, 16, 1–10. [Google Scholar] [CrossRef]
- Ruas, A.; Graça, A.; Marto, J.; Gonçalves, L.; Oliveira, A.; Nogueira da Silva, A.; Pimentel, M.; Moura, A.M.; Serra, A.T.; Figueiredo, A.C.; et al. Chemical characterization and bioactivity of commercial essential oils and hydrolates obtained from Portuguese forest logging and thinning. Molecules 2022, 27, 3572. [Google Scholar] [CrossRef] [PubMed]
HDTs (min) | Essential Oil | ||||
---|---|---|---|---|---|
Samples | Yield (%, w/f.w.) | HDR (mg/min) | Density (g/cm3) | Colour | |
0–2 | Fr1 | 0.139 ± 0.031 c | 208.5 ± 47.2 a | 0.847 ± 0.013 b | incolour |
2–10 | Fr2 | 0.061 ± 0.014 e | 22.8 ± 5.1 b | 0.878 ± 0.014 ab | pale yellow |
10–30 | Fr3 | 0.074 ± 0.008 de | 11.1 ± 1.2 c | 0.888 ± 0.025 a | yellowish |
30–60 | Fr4 | 0.090 ± 0.012 d | 9.0 ± 1.2 c | 0.887 ± 0.029 a | yellowish |
60–120 | Fr5 | 0.143 ± 0.011 c | 7.1 ± 0.6 d | 0.891 ± 0.019 a | yellow |
120–240 | Fr6 | 0.180 ± 0.003 b | 4.5 ± 0.1 e | 0.879 ± 0.034 ab | yellow |
0–240 | Control | 0.820 ± 0.078 a | 10.0 ± 1.0 c | 0.889 ± 0.006 a | yellowish |
HDTs (min) | α-Pinene | Camphene | Sabinene | Myrcene | Limonene | Other MHs | Total MHs |
---|---|---|---|---|---|---|---|
0–2 | 54.18 a | 4.99 a | 10.25 a | 7.45 a | 7.16 a | 7.76 a | 91.79 a |
2–10 | 24.12 b | 2.60 b | 5.16 b | 3.88 b | 4.61 b | 4.86 b | 45.23 b |
10–30 | 12.48 c | 1.58 c | 2.29 c | 2.07 c | 2.52 c | 2.98 c | 23.92 c |
30–60 | 8.48 e | 1.07 d | 1.01 d | 1.32 cd | 1.52 d | 2.07 d | 15.47 d |
60–120 | 10.15 de | 1.17 d | 0.79 de | 1.45 cd | 1.57 d | 2.35 d | 17.48 d |
120–240 | 6.35 f | 0.60 e | 0.26 e | 0.78 d | 0.82 e | 1.28 e | 10.09 e |
0–240 (control) | 11.64 cd | 1.07 d | 1.77 c | 1.61 c | 1.74 d | 1.85 e | 19.68 d |
HDTs (min) | Terpinen-4-ol | Bornyl Acetate | Other OCM | Total OCM |
---|---|---|---|---|
0–2 | 0.17 d | 2.32 c | 0.47 cd | 2.96 d |
2–10 | 0.97 bc | 6.32 a | 1.69 a | 8.98 a |
10–30 | 1.40 a | 3.92 b | 1.23 b | 6.55 b |
30–60 | 1.16 ab | 2.11 c | 0.73 c | 4.00 c |
60–120 | 0.98 b | 1.48 d | 0.49 cd | 2.95 d |
120–240 | 0.64 c | 0.86 e | 0.36 d | 1.86 e |
0–240 (control) | 0.65 c | 1.72 d | 0.64 c | 3.01 d |
HDTs (min) | δ-Cadinene | Other SHs | Total SHs |
---|---|---|---|
0–2 | 0.23 e | 0.70 e | 0.93 e |
2–10 | 1.98 b | 3.53 b | 5.51 a |
10–30 | 2.62 a | 2.24 a | 4.86 a |
30–60 | 1.71 b | 1.12 b | 2.83 b |
60–120 | 0.86 c | 0.57 c | 1.43 d |
120–240 | 0.54 d | 0.47 d | 1.01 e |
0–240 (control) | 1.07 c | 0.96 c | 2.03 c |
HDTs (min) | Elemol | Germacrene-D-4-ol | γ-Eudesmol | α+β-Eudesmol | Other OCS | Total OCS |
---|---|---|---|---|---|---|
0–2 | 2.11 e | 0.70 c | 0.05 e | 0.38 f | 0.04 e | 3.28 e |
2–10 | 18.10 d | 3.61 a | 0.76 e | 3.86 e | 1.11 d | 27.44 d |
10–30 | 28.55 ab | 1.43 b | 2.14 d | 8.05 d | 2.00 c | 42.17 c |
30–60 | 30.07 a | 0.18 d | 4.38 c | 11.99 c | 3.11 b | 49.73 b |
60–120 | 25.62 bc | 0.03 d | 6.73 b | 15.14 b | 3.33 b | 50.85 b |
120–240 | 24.78 c | 0.00 d | 11.48 a | 21.64 a | 4.49 a | 62.39 a |
0–240 (control) | 27.47 abc | 0.97 c | 6.55 b | 13.1 bc | 3.03 b | 51.12 b |
HDTs (min) | Phyllocladene | Rosa-5,15-diene | Other DHs | Total DHs |
---|---|---|---|---|
0–2 | 0.58 d | 0.10 d | 0.08 c | 0.76 e |
2–10 | 7.21 c | 1.43 c | 1.74 b | 10.38 d |
10–30 | 12.94 b | 2.39 ab | 3.00 ab | 18.33 c |
30–60 | 16.42 a | 2.73 a | 3.63 a | 22.78 a |
60–120 | 16.12 a | 2.26 b | 3.11 ab | 21.49 ab |
120–240 | 14.20 ab | 1.66 c | 2.45 ab | 18.31 bc |
0–240 (control) | 14.00 ab | 2.11 b | 2.54 ab | 18.65 bc |
HDTs (min) | Nezukol | Other OCD | Total OCD |
---|---|---|---|
0–2 | 0.03 f | 0.00 c | 0.03 f |
2–10 | 0.66 e | 0.02 c | 0.68 e |
10–30 | 1.39 d | 0.05 c | 1.44 d |
30–60 | 2.12 c | 0.11 b | 2.23 c |
60–120 | 2.75 b | 0.20 b | 2.95 b |
120–240 | 3.47 a | 0.30 a | 3.77 a |
0–240 (control) | 2.59 b | 0.31 a | 2.9 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arruda, F.; Lima, A.; Wortham, T.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Rosa, J.S.; Lima, E. Sequential Separation of Essential Oil Components during Hydrodistillation of Azorean Cryptomeria japonica Foliage: Effects on Yield, Physical Properties, and Chemical Composition. Separations 2023, 10, 483. https://doi.org/10.3390/separations10090483
Arruda F, Lima A, Wortham T, Janeiro A, Rodrigues T, Baptista J, Rosa JS, Lima E. Sequential Separation of Essential Oil Components during Hydrodistillation of Azorean Cryptomeria japonica Foliage: Effects on Yield, Physical Properties, and Chemical Composition. Separations. 2023; 10(9):483. https://doi.org/10.3390/separations10090483
Chicago/Turabian StyleArruda, Filipe, Ana Lima, Tanner Wortham, Alexandre Janeiro, Tânia Rodrigues, José Baptista, José S. Rosa, and Elisabete Lima. 2023. "Sequential Separation of Essential Oil Components during Hydrodistillation of Azorean Cryptomeria japonica Foliage: Effects on Yield, Physical Properties, and Chemical Composition" Separations 10, no. 9: 483. https://doi.org/10.3390/separations10090483
APA StyleArruda, F., Lima, A., Wortham, T., Janeiro, A., Rodrigues, T., Baptista, J., Rosa, J. S., & Lima, E. (2023). Sequential Separation of Essential Oil Components during Hydrodistillation of Azorean Cryptomeria japonica Foliage: Effects on Yield, Physical Properties, and Chemical Composition. Separations, 10(9), 483. https://doi.org/10.3390/separations10090483