High Value Conversion Technology of Nickel in Waste Electrolytes of Nitrogen Trifluoride by Electrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Method
2.3. Analysis and Characterization Methods
3. Results and Discussion
3.1. The Characterization of Raw Material
3.2. Solvent Selection
3.3. Principle Analysis of Precipitation
3.4. Selection of Precipitating Agent
3.5. The Preparation of NiO
4. Conclusions
- (1)
- The chemical precipitation method was used to select the appropriate solvent and precipitator, and optimize the experimental conditions. The nickel in high-nickel waste electrolytic slag was recovered. The problem of industrial production of nitrogen trifluoride by the electrolytic method was solved, realizing the recycling of resources;
- (2)
- An optimized recovery process was selected in the experiment. The waste electrolytic slag with high nickel content was treated by acid leaching, fractional precipitation, and oxidation roasting, and finally, the product NiO was obtained. The average mass fraction of nickel is 76.6%. The average recovery efficiency of nickel reached 92.4%;
- (3)
- The process not only realizes the recovery of nickel resources, but also has good economic benefits, and provides experimental support for realizing industrialization.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Yang, C.; Du, S.; Wu, Y.; Huang, B.; Tan, A.; Liang, Z.; Xiao, J. Dynamic Adsorption Separation of C-C4F8/C3F8 for Effective Purification of Perfluoropropane Electronic Gas. Chem. Eng. Sci. 2023, 273, 118656. [Google Scholar] [CrossRef]
- Clark, J.R. Chemistry of Electronic Gases; ACS Publications: Washington, DC, USA, 2006. [Google Scholar]
- Miyazaki, T.; Mori, I.; Umezaki, T.; Yonezawa, S. NF3 Synthesis Using ClF3 as a Mediator. J. Fluor. Chem. 2019, 219, 55–61. [Google Scholar] [CrossRef]
- Tasaka, A. Electrochemical Synthesis and Application of NF3. J. Fluor. Chem. 2007, 128, 296–310. [Google Scholar] [CrossRef]
- Panda, R.; Jha, M.K.; Pathak, D.D.; Gupta, R. Recovery of Ag, Cu, Ni and Fe from the Nitrate Leach Liquor of Waste ICs. Miner. Eng. 2020, 158, 106584. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, K.M.; Ko, M.S.; Kim, Y.S. A Study of the NF3 Plasma Etching Reaction with Cobalt Oxide Films Grown on an Inorganic Compounds. Nucl. Eng. Technol. 2022, 54, 4449–4459. [Google Scholar] [CrossRef]
- Meng, L.; Qu, J.; Guo, Q.; Xie, K.; Zhang, P.; Han, L.; Zhang, G.; Qi, T. Recovery of Ni, Co, Mn, and Mg from Nickel Laterite Ores Using Alkaline Oxidation and Hydrochloric Acid Leaching. Sep. Purif. Technol. 2015, 143, 80–87. [Google Scholar] [CrossRef]
- Wang, H.Y.; Li, Y.; Jiao, S.Q.; Chou, K.C.; Zhang, G.H. Recovery of Ni Matte from Ni-Bearing Electroplating Sludge. J. Environ. Manag. 2023, 326, 116744. [Google Scholar] [CrossRef]
- Perosa, A.; Tundo, P. Selective Hydrogenolysis of Glycerol with Raney Nickel. Ind. Eng. Chem. Res. 2005, 44, 8535–8537. [Google Scholar] [CrossRef]
- Tian, B.; Cui, Y.; Zhao, J.; Liu, M.; Shang, H.; Gao, W.; Wen, J.; Ma, J. Stepwise Recovery of Ni, Cu, Zn, and Cr: A Green Route to Resourceful Disposal of Electroplating Sludge. J. Environ. Chem. Eng. 2023, 11, 109767. [Google Scholar] [CrossRef]
- Guo, X.Y.; Shi, W.T.; Li, D.; Tian, Q.H. Leaching Behavior of Metals from Limonitic Laterite Ore by High Pressure Acid Leaching. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2011, 21, 191–195. [Google Scholar] [CrossRef]
- Johnson, J.A.; Cashmore, B.C.; Hockridge, R.J. Optimisation of Nickel Extraction from Laterite Ores by High Pressure Acid Leaching with Addition of Sodium Sulphate. Miner. Eng. 2005, 18, 1297–1303. [Google Scholar] [CrossRef]
- Benali, K.; Benhida, R.; Khaless, K. A Novel and Complete Process for Iodine Extraction and Recovery from Industrial Wet-Process Phosphoric Acid Based on Chemical Oxidation and Solvent Extraction. Process Saf. Environ. Prot. 2023, 176, 332–345. [Google Scholar] [CrossRef]
- Virolainen, S.; Fallah Fini, M.; Laitinen, A.; Sainio, T. Solvent Extraction Fractionation of Li-Ion Battery Leachate Containing Li, Ni, and Co. Sep. Purif. Technol. 2017, 179, 274–282. [Google Scholar] [CrossRef]
- Coman, V.; Robotin, B.; Ilea, P. Nickel Recovery/Removal from Industrial Wastes: A Review. Resour. Conserv. Recycl. 2013, 73, 229–238. [Google Scholar] [CrossRef]
- Argun, M.E. Use of Clinoptilolite for the Removal of Nickel Ions from Water: Kinetics and Thermodynamics. J. Hazard. Mater. 2008, 150, 587–595. [Google Scholar] [CrossRef]
- Dąbrowski, A.; Hubicki, Z.; Podkościelny, P.; Robens, E. Selective Removal of the Heavy Metal Ions from Waters and Industrial Wastewaters by Ion-Exchange Method. Chemosphere 2004, 56, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, A.; Fatta, D.; Parperis, K.; Mentzis, A.; Haralambous, K.J.; Loizidou, M. Nickel Uptake from a Wastewater Stream Produced in a Metal Finishing Industry by Combination of Ion-Exchange and Precipitation Methods. Sep. Purif. Technol. 2004, 39, 181–188. [Google Scholar] [CrossRef]
- Dzyazko, Y.S.; Belyakov, V.N. Purification of a Diluted Nickel Solution Containing Nickel by a Process Combining Ion Exchange and Electrodialysis. Desalination 2004, 162, 179–189. [Google Scholar] [CrossRef]
- Liu, J.; Qiu, Z.; Yang, J.; Cao, L.; Zhang, W. Recovery of Mo and Ni from Spent Acrylonitrile Catalysts Using an Oxidation Leaching-Chemical Precipitation Technique. Hydrometallurgy 2016, 164, 64–70. [Google Scholar] [CrossRef]
- BATTI, N.R.; MANDRE, N.R. Nickel and Aluminium Recovery from Spent Reforming Catalyst through Selective Leaching, Crystallization and Precipitation. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2022, 32, 345–353. [Google Scholar] [CrossRef]
- Yang, X.; Peng, X.; Kong, L.; Hu, X. Removal of Ni(II) from Strongly Acidic Wastewater by Chelating Precipitation and Recovery of NiO from the Precipitates. J. Environ. Sci. 2021, 104, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Astuti, W.; Nurjaman, F.; Rofiek Mufakhir, F.; Sumardi, S.; Avista, D.; Cleary Wanta, K.; Tri Bayu Murti Petrus, H. A Novel Method: Nickel and Cobalt Extraction from Citric Acid Leaching Solution of Nickel Laterite Ores Using Oxalate Precipitation. Miner. Eng. 2023, 191, 107982. [Google Scholar] [CrossRef]
- Liu, K.; Wang, Y.; Long, H.; Cheng, Y.; Wu, Y.; Cai, Y.; Jiang, J. Recovery of Cobalt and Nickel from Magnesium-Rich Sulfate Leach Liquor with Magnesium Oxide Precipitation Method. Miner. Eng. 2021, 169, 106961. [Google Scholar] [CrossRef]
- Klaehn, J.R.; Shi, M.; Diaz, L.A.; Molina, D.E.; Reich, S.M.; Palasyuk, O.; Repukaiti, R.; Lister, T.E. Removal of Impurity Metals as Phosphates from Lithium-Ion Battery Leachates. Hydrometallurgy 2023, 217, 106041. [Google Scholar] [CrossRef]
Element% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
F | Ni | Fe | Na | O | Cu | Mn | S | K | Pb | Ca |
32.94 | 30.90 | 12.96 | 9.48 | 3.28 | 0.24 | 0.06 | 0.01 | 0.03 | 0.06 | 0.02 |
Solvent | Mass Fraction % | Volume mL | Dissolution Phenomenon |
---|---|---|---|
Water | / | 20 | Partial dissolution |
Sulfuric acid | 20 | 20 | Partial dissolution |
Nitric acid | 24 | 20 | Completely dissolved the reaction is smooth |
Precipitant | pH | Fe3+ | Ni2+ |
---|---|---|---|
NaOH | 4–5 | Brown-yellow precipitation | No precipitation |
NaOH | 7–9 | Yellow-green precipitation | Grass green colloid, a small amount of precipitation |
NaOH | 9–11 | No precipitation | Green precipitation, complete precipitation |
Na2CO3 | 7–11 | No precipitation | Green precipitation, complete precipitation |
Sample | Mass/g | Nickel Mass Fraction in Sample % | Mass of the Product (NiO) g | Mass Fraction of Ni in NiO % | Recovery Efficiency % |
---|---|---|---|---|---|
1# | 1 | 30.90 | 0.36 | 78.3 | 91.2 |
2# | 1 | 30.90 | 0.37 | 76.9 | 92.0 |
3# | 1 | 30.90 | 0.39 | 74.6 | 94.1 |
Average value | 1 | 30.90 | 0.373 | 76.6 | 92.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Ran, Y.; Yang, J.; Wei, Y. High Value Conversion Technology of Nickel in Waste Electrolytes of Nitrogen Trifluoride by Electrolysis. Separations 2023, 10, 477. https://doi.org/10.3390/separations10090477
Ren Y, Ran Y, Yang J, Wei Y. High Value Conversion Technology of Nickel in Waste Electrolytes of Nitrogen Trifluoride by Electrolysis. Separations. 2023; 10(9):477. https://doi.org/10.3390/separations10090477
Chicago/Turabian StyleRen, Yongzhuan, Yuxuan Ran, Jiaqi Yang, and Yonggang Wei. 2023. "High Value Conversion Technology of Nickel in Waste Electrolytes of Nitrogen Trifluoride by Electrolysis" Separations 10, no. 9: 477. https://doi.org/10.3390/separations10090477
APA StyleRen, Y., Ran, Y., Yang, J., & Wei, Y. (2023). High Value Conversion Technology of Nickel in Waste Electrolytes of Nitrogen Trifluoride by Electrolysis. Separations, 10(9), 477. https://doi.org/10.3390/separations10090477