Influence of Choline Chloride on the Phase Equilibria and Partition Performance of Polymer/Polymer Aqueous Biphasic Systems
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Determination of the Binodal Curves
2.3. Determination of Tie-Lines
2.4. Partitioning of Caffeine
3. Results and Discussions
3.1. Effect of the Polymers’ Molecular Weight and PEG Functionalization
3.2. Effect of [Ch]Cl in the Formation of PEG/NaPA ABS
3.3. Effect of Temperature
3.4. Partitioning of Caffeine
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khajuria, A.; Atienza, V.A.; Chavanich, S.; Henning, W.; Islam, I.; Kral, U.; Liu, M.; Liu, X.; Murthy, I.K.; Oyedotun, T.D.T.; et al. Accelerating Circular Economy Solutions to Achieve the 2030 Agenda for Sustainable Development Goals. Circ. Econ. 2022, 1, 100001. [Google Scholar] [CrossRef]
- Saha, N.; Sarkar, B.; Sen, K. Aqueous Biphasic Systems: A Robust Platform for Green Extraction of Biomolecules. J. Mol. Liq. 2022, 363, 119882. [Google Scholar] [CrossRef]
- Freire, M.G.; Cláudio, A.F.M.; Araújo, J.M.M.; Coutinho, J.A.P.; Marrucho, I.M.; Lopes, J.N.C.; Rebelo, L.P.N. Aqueous Biphasic Systems: A Boost Brought about by Using Ionic Liquids. Chem. Soc. Rev. 2012, 41, 4966–4995. [Google Scholar] [CrossRef] [PubMed]
- Singla, M.; Sit, N. Theoretical Aspects and Applications of Aqueous Two-Phase Systems. ChemBioEng Rev. 2022, 10, 65–80. [Google Scholar] [CrossRef]
- Bernardo, S.C.; Capela, E.V.; Pereira, J.F.B.; Ventura, S.P.M.; Freire, M.G.; Coutinho, J.A.P. Opposite Effects Induced by Cholinium-Based Ionic Liquid Electrolytes in the Formation of Aqueous Biphasic Systems Comprising Polyethylene Glycol and Sodium Polyacrylate. Molecules 2021, 26, 6612. [Google Scholar] [CrossRef] [PubMed]
- Torres-Bautista, A.; Torres-Acosta, M.A.; González-Valdez, J. Characterization and Optimization of Polymer-Polymer Aqueous Two-Phase Systems for the Isolation and Purification of CaCo2 Cell-Derived Exosomes. PLoS ONE 2022, 17, e0273243. [Google Scholar] [CrossRef]
- Marchel, M.; João, K.G.; Marrucho, I.M. On the Use of Ionic Liquids as Adjuvants in PEG-(NH4)2SO4 Aqueous Biphasic Systems: Phase Diagrams Behavior and the Effect of IL Concentration on Myoglobin Partition. Sep. Purif. Technol. 2019, 210, 710–718. [Google Scholar] [CrossRef]
- Johansson, H.-O.; Feitosa, E.; Junior, A.P. Phase Diagrams of the Aqueous Two-Phase Systems of Poly(Ethylene Glycol)/Sodium Polyacrylate/Salts. Polymers 2011, 3, 587–601. [Google Scholar] [CrossRef]
- Farias, F.O.; Oliveira, G.; Leal, F.G.; Wojeicchowski, J.P.; Yamamoto, C.I.; Igarashi-Mafra, L.; Mafra, M.R. Cholinium Chloride Effect on Ethanol-Based Aqueous Biphasic Systems: Liquid-Liquid Equilibrium and Biomolecules Partition Behavior. Fluid Phase Equilibria 2020, 505, 112363. [Google Scholar] [CrossRef]
- Santos, J.H.P.M.; Martins, M.; Silva, A.R.P.; Cunha, J.R.; Rangel-Yagui, C.O.; Ventura, S.P.M. Imidazolium-Based Ionic Liquids as Adjuvants to Form Polyethylene Glycol with Salt Buffer Aqueous Biphasic Systems. J. Chem. Eng. Data 2020, 65, 3794–3801. [Google Scholar] [CrossRef]
- da Cruz Silva, K.; Abreu, C.S.; Vieira, A.W.; Mageste, A.B.; Rodrigues, G.D.; de Lemos, L.R. Aqueous Two-Phase Systems Formed by Different Phase-Forming Components: Equilibrium Diagrams and Dye Partitioning Study. Fluid Phase Equilibria 2020, 520, 112664. [Google Scholar] [CrossRef]
- Neves, C.M.S.S.; de Cássia, S.; Sousa, R.; Pereira, M.M.; Freire, M.G.; Coutinho, J.A.P. Understanding the Effect of Ionic Liquids as Adjuvants in the Partition of Biomolecules in Aqueous Two-Phase Systems Formed by Polymers and Weak Salting-out Agents. Biochem. Eng. J. 2019, 141, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Piculell, L.; Lindman, B. Association and Segregation in Aqueous Polymer/Polymer, Polymer/Surfactant, and Surfactant/Surfactant Mixtures: Similarities and Differences. Adv. Colloid Interface Sci. 1992, 41, 149–178. [Google Scholar] [CrossRef]
- Rocha, I.L.D.; Lopes, A.M.C.; Ventura, S.P.M.; Coutinho, J.A.P. Selective Separation of Vanillic Acid from Other Lignin-Derived Monomers Using Centrifugal Partition Chromatography: The Effect of PH. ACS Sustain. Chem. Eng. 2022, 10, 4913–4921. [Google Scholar] [CrossRef]
- Magalhães, F.F.; Pereira, M.M.; de Cássia Superbi de Sousa, R.; Tavares, A.P.M.; Coutinho, J.A.P.; Freire, M.G. Tailoring the partitioning of proteins using ionic liquids as adjuvants in polymer-polymer aqueous biphasic systems. Green Chem. Eng. 2022, 3, 328–337. [Google Scholar] [CrossRef]
- Ng, H.S.; Kee, P.E.; Wu, Y.-C.; Chen, L.; Wong, S.Y.W.; Lan, J.C.-W. Enhanced recovery of astaxanthin from recombinant Kluyveromyces marxianus with ultrasonication-assisted alcohol/salt aqueous biphasic system. J. Biosci. Bioeng. 2021, 132, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.S.; Kee, P.E.; Yim, H.S.; Tan, J.S.; Chow, Y.H.; Lan, J.C.-W. Characterization of alcohol/salt aqueous two-phase system for optimal separation of gallic acids. J. Biosci. Bioeng. 2021, 131, 537–542. [Google Scholar] [CrossRef]
- Capela, E.V.; Valente, A.I.; Nunes, J.C.F.; Magalhães, F.F.; Rodríguez, O.; Soto, A.; Freire, M.G.; Tavares, A.P.M. Insights on the laccase extraction and activity in ionic-liquid-based aqueous biphasic systems. Sep. Purif. Technol. 2020, 248, 117052. [Google Scholar] [CrossRef]
- Dimitrijević, A.; Tavares, A.P.M.; Jocić, A.; Marić, S.; Trtić-Petrović, T.; Gadžurić, S.; Freire, M.G. Aqueous Biphasic Systems Comprising Copolymers and Cholinium-Based Salts or Ionic Liquids: Insights on the Mechanisms Responsible for Their Creation. Sep. Purif. Technol. 2020, 248, 117050. [Google Scholar] [CrossRef]
- Tang, N.; Wang, Y.; Li, M.; Liu, L.; Yin, C.Y.; Yang, X.; Wang, S. Ionic Liquid as Adjuvant in an Aqueous Biphasic System Composed of Polyethylene Glycol for Green Separation of Pd(II) from Hydrochloric Solution. Sep. Purif. Technol. 2020, 246, 116898. [Google Scholar] [CrossRef]
- Veríssimo, N.V.; Vicente, F.A.; de Oliveira, R.C.; Likozar, B.; de Oliveira, R.C.; Pereira, J.F.B. Ionic Liquids as Protein Stabilizers for Biological and Biomedical Applications: A Review. Biotechnol. Adv. 2022, 61, 108055. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.F.B.; Kurnia, K.A.; Freire, M.G.; Coutinho, J.A.P.; Rogers, R.D. Controlling the Formation of Ionic-Liquid-Based Aqueous Biphasic Systems by Changing the Hydrogen-Bonding Ability of Polyethylene Glycol End Groups. ChemPhysChem 2015, 16, 2219–2225. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.F.B.; Magri, A.; Quental, M.V.; Gonzalez-Miquel, M.; Freire, M.G.; Coutinho, J.A.P. Alkaloids as Alternative Probes to Characterize the Relative Hydrophobicity of Aqueous Biphasic Systems. ACS Sustain. Chem. Eng. 2016, 4, 1512–1520. [Google Scholar] [CrossRef]
- Merchuk, J.C.; Andrews, B.A.; Asenjo, J.A. Aqueous Two-Phase Systems for Protein Separation. J. Chromatogr. B Biomed. Sci. Appl. 1998, 711, 285–293. [Google Scholar] [CrossRef]
- Pereira, J.F.B.; Rebelo, L.P.N.; Rogers, R.D.; Coutinho, J.A.P.; Freire, M.G. Combining Ionic Liquids and Polyethylene Glycols to Boost the Hydrophobic–Hydrophilic Range of Aqueous Biphasic Systems. Phys. Chem. Chem. Phys. 2013, 15, 19580–19583. [Google Scholar] [CrossRef]
- Gupta, V.; Nath, S.; Chand, S. Role of Water Structure on Phase Separation in Polyelectrolyte–Polyethyleneglycol Based Aqueous Two-Phase Systems. Polymer 2002, 43, 3387–3390. [Google Scholar] [CrossRef]
- Titus, A.R.; Madeira, P.P.; Ferreira, L.A.; Chernyak, V.; Uversky, V.N.; Zaslavsky, B.Y. Mechanism of Phase Separation in Aqueous Two-Phase Systems. International. J. Mol. Sci. 2022, 23, 14366. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, S.; Rao, J.R.; Nair, B.U.; Ramasami, T. Aqueous Two-Phase Poly(Ethylene Glycol)–Poly(Acrylic Acid) System for Protein Partitioning: Influence of Molecular Weight, PH and Temperature. Process. Biochem. 2008, 43, 905–911. [Google Scholar] [CrossRef]
- Lopes, A.M.; Molino, J.V.D.; dos Santos-Ebinuma, V.C.; Pessoa, A.; Valentini, S.R.; Pereira, J.F.B. Effect of Electrolytes as Adjuvants in GFP and LPS Partitioning on Aqueous Two-Phase Systems: 1. Polymer-Polymer Systems. Sep. Purif. Technol. 2018, 206, 39–49. [Google Scholar] [CrossRef]
- Santos-Ebinuma, V.C.; Lopes, A.M.; Pessoa, A.; Teixeira, M.F.S. Extraction of Natural Red Colorants from the Fermented Broth of Penicillium Purpurogenum Using Aqueous Two-Phase Polymer Systems. Biotechnol. Prog. 2015, 31, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.H.P.M.; Martins, M.; Silvestre, A.J.D.; Coutinho, J.A.P.; Ventura, S.P.M. Fractionation of Phenolic Compounds from Lignin Depolymerisation Using Polymeric Aqueous Biphasic Systems with Ionic Surfactants as Electrolytes. Green Chem. 2016, 18, 5569–5579. [Google Scholar] [CrossRef]
- Chakraborty, A.; Sen, K. Impact of PH and Temperature on Phase Diagrams of Different Aqueous Biphasic Systems. J. Chromatogr. A 2016, 1433, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, R.; Maali, M. Toward an Understanding of Aqueous Biphasic Formation in Polymer–Polymer Aqueous Systems. Polymer 2016, 83, 1–11. [Google Scholar] [CrossRef]
- Almeida, M.R.; Rufino, A.F.C.S.; Belchior, D.C.V.; Carvalho, P.J.; Freire, M.G. Characterization of Cholinium-Carboxylate-Based Aqueous Biphasic Systems. Fluid Phase Equilibria 2022, 558, 113458. [Google Scholar] [CrossRef]
- Basaiahgari, A.; Priyanka, V.P.; Ijardar, S.P.; Gardas, R.L. Aqueous Biphasic Systems of Amino Acid-Based Ionic Liquids: Evaluation of Phase Behavior and Extraction Capability for Caffeine. Fluid Phase Equilibria 2020, 506, 112373. [Google Scholar] [CrossRef]
Assays | PEG-600/NaPA-8000 ABS | PEG-600/NaPA-15000 ABS | ||
---|---|---|---|---|
PEG-600 (wt%) | NaPA-8000 (wt%) | PEG-600 (wt%) | NaPA-15000 (wt%) | |
System 1 | - | - | 12 | 11.9 |
System 2 | 15.4 | 15.2 | 14.1 | 14 |
System 3 | 16.6 | 14.1 | 15.5 | 16 |
System 4 | 20.5 | 20.5 | 18.1 | 18 |
System 5 | 23.4 | 23.3 | 20.1 | 19.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, M.B.N.; Lopes, A.M.; Santos, N.A.; Santos-Ebinuma, V.C.; Vicente, F.A.; Pereira, J.F.B. Influence of Choline Chloride on the Phase Equilibria and Partition Performance of Polymer/Polymer Aqueous Biphasic Systems. Separations 2023, 10, 528. https://doi.org/10.3390/separations10100528
Alves MBN, Lopes AM, Santos NA, Santos-Ebinuma VC, Vicente FA, Pereira JFB. Influence of Choline Chloride on the Phase Equilibria and Partition Performance of Polymer/Polymer Aqueous Biphasic Systems. Separations. 2023; 10(10):528. https://doi.org/10.3390/separations10100528
Chicago/Turabian StyleAlves, Mariana B. N., André M. Lopes, Nathalia A. Santos, Valéria C. Santos-Ebinuma, Filipa A. Vicente, and Jorge F. B. Pereira. 2023. "Influence of Choline Chloride on the Phase Equilibria and Partition Performance of Polymer/Polymer Aqueous Biphasic Systems" Separations 10, no. 10: 528. https://doi.org/10.3390/separations10100528
APA StyleAlves, M. B. N., Lopes, A. M., Santos, N. A., Santos-Ebinuma, V. C., Vicente, F. A., & Pereira, J. F. B. (2023). Influence of Choline Chloride on the Phase Equilibria and Partition Performance of Polymer/Polymer Aqueous Biphasic Systems. Separations, 10(10), 528. https://doi.org/10.3390/separations10100528