Expression of Connexin 43 in Granular Cell Tumors of the Skin, Tongue and Esophagus
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aasen, T.; Leithe, E.; Graham, S.V.; Kameritsch, P.; Mayán, M.D.; Mesnil, M.; Pogoda, K.; Tabernero, A. Connexins in cancer: Bridging the gap to the clinic. Oncogene 2019, 38, 4429–4451. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.H.; Martin, P.E. Gap junctions: Structure and function. Mol. Membr. Biol. 2002, 19, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Naser Al Deen, N.; Abou Haidar, M.; Talhouk, R. Connexin43 as a Tumor Suppressor: Proposed Connexin43 mRNA-circularRNAs-microRNAs Axis Towards Prevention and Early Detection in Breast Cancer. Front. Med. 2019, 6, 192. [Google Scholar] [CrossRef]
- Zhou, M.; Zheng, M.; Zhou, X.; Tian, S.; Yang, X.; Ning, Y.; Li, Y.; Zhang, S. The roles of connexins and gap junctions in the progression of cancer. Cell Commun. Signal. 2023, 21, 8. [Google Scholar] [CrossRef] [PubMed]
- Aasen, T.; Mesnil, M.; Naus, C.C.; Lampe, P.D.; Laird, D.W. Gap junctions and cancer: Communicating for 50 years. Nat. Rev. Cancer 2016, 16, 775–788. [Google Scholar] [CrossRef] [PubMed]
- Stelkovics, E.; Kiszner, G.; Meggyeshazi, N.; Korom, I.; Varga, E.; Nemeth, I.; Molnar, J.; Marczinovits, I.; Krenacs, T. Selective in situ protein expression profiles correlate with distinct phenotypes of basal cell carcinoma and squamous cell carcinoma of the skin. Hist. Histopath. 2013, 28, 941–954. [Google Scholar]
- Sargen, M.R.; Gormley, R.H.; Pasha, T.L.; Yum, S.; Acs, G.; Xu, X.; Zhang, P.J. Melanocytic tumors express connexin 43 but not 26: Immunohistochemical analysis with potential significance in melanocytic oncogenesis. Am. J. Dermatopathol. 2013, 35, 813–817. [Google Scholar] [CrossRef]
- Fernandez-Flores, A.; Varela-Vazquez, A.; Mayan, M.D.; Fonseca, E. Expression of Connexin 43 (Cx43) in benign Cutaneous Tumors with Follicular Differentiation. Am. J. Dermatopathol. 2019, 41, 810–818. [Google Scholar] [CrossRef]
- Bišćanin, A.; Ljubičić, N.; Boban, M.; Baličević, D.; Pavić, I.; Bišćanin, M.M.; Budimir, I.; Dorosulic, Z.; Duvnjak, M. CX43 Expression in Colonic Adenomas and Surrounding Mucosa Is a Marker of Malignant Potential. Anticancer Res. 2016, 36, 5437–5442. [Google Scholar] [CrossRef]
- Phillips, S.L.; Williams, C.B.; Zambrano, J.N.; Williams, C.J.; Yeh, E.S. Connexin 43 in the development and progression of breast cancer: What’s the connection? Int. J. Oncol. 2017, 51, 1005–1013. [Google Scholar] [CrossRef]
- Puzzo, L.; Caltabiano, R.; Parenti, R.; Trapasso, S.; Allegra, E. Connexin 43 (Cx43) Expression in Laryngeal Squamous Cell Carcinomas: Preliminary Data on Its Possible Prognostic Role. Head Neck Pathol. 2016, 10, 292–297. [Google Scholar] [CrossRef]
- Frings, V.G.; Goebeler, M.; Schilling, B.; Kneitz, H. Aberrant cytoplasmic connexin43 expression as a helpful marker in vascular neoplasms. J. Cutan. Pathol. 2021, 48, 1335–1341. [Google Scholar] [CrossRef]
- Abrikossoff, A. Über Myome ausgehend von der quergestreiften willkürlichen Muskulatur (On myomas originating from cross-striated voluntary muscle). Virchows Arch. A Pathol. Anat. 1926, 260, 215–233. [Google Scholar] [CrossRef]
- Mobarki, M.; Dumollard, J.M.; Dal Col, P.; Camy, F.; Peoc’h, M.; Karpathiou, G. Granular cell tumor a study of 42 cases and systemic review of the literature. Pathol. Res. Pract. 2020, 216, 152865. [Google Scholar] [CrossRef]
- Rose, B.; Tamvakopoulos, G.S.; Yeung, E.; Pollock, R.; Skinner, J.; Briggs, T.; Cannon, S. Granular cell tumours: A rare entity in the musculoskeletal system. Sarcoma 2009, 2009, 765927. [Google Scholar] [CrossRef]
- Tsuchida, T.; Okada, K.; Itoi, E.; Sato, T.; Sato, K. Intramuscular malignant granular cell tumor. Skelet. Radiol. 1997, 26, 116–121. [Google Scholar] [CrossRef]
- Fragulidis, G.P.; Chondrogiannis, K.D.; Lykoudis, P.M.; Karakatsanis, A.; Georgiou, C.A.; Vouza, E.; Melemeni, A. Subcutaneous granular cell tumour of the lumber region. J. Cutan. Aesthet. Surg. 2011, 4, 132–134. [Google Scholar] [CrossRef] [PubMed]
- Gross, V.L.; Lynfield, Y. Multiple cutaneous granular cell tumors: A case report and review of the literature. Cutis 2002, 69, 343–346. [Google Scholar] [PubMed]
- Lack, E.E.; Worsham, R.F.; Callihan, M.D.; Crawford, B.E.; Klappenbach, S.; Rowden, G.; Chun, B. Granular cell tumor: A clinicopathologic study of 110 patients. J. Surg. Oncol. 1980, 13, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, K.; Kamio, T.; Hirano, A.; Seshimo, A.; Kameoka, S. Granular cell tumors: A report of six cases. World J. Surg. Oncol. 2012, 10, 204. [Google Scholar] [CrossRef]
- Nishitha, T.; Uroosa, I.; Mayurathan, K.; Chang, Q.; Opitz, L.; Meekoo, D.; Sherif, A. Esophageal Granular Cell Tumor: A Case Report and Review of Literature. Cureus 2016, 8, e782. [Google Scholar]
- Rekhi, B.; Jambhekar, N.A. Morphologic spectrum, immunohistochemical analysis and clinical features of a series of granular cell tumors of soft tissues: A study from a tertiary referral cancer center. Ann. Diagn. Pathol. 2010, 14, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Gündüz, Ö.; Erkin, G.; Bilezikçi, B.; Adanalı, G. Slowly Growing Nodule on the Trunk: Cutaneous Granular Cell Tumor. Dermatopathology 2016, 3, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Armin, A.; Connelly, E.M.; Rowden, G. An immunoperoxidase investigation of S-100 protein in granular cell myoblastomas: Evidence for Schwann cell derivation. Am. J. Clin. Pathol. 1983, 79, 37–44. [Google Scholar] [CrossRef]
- Lazar, A.J.; Fletcher, C.D. Primitive nonneural granular cell tumors of skin: Clinicopathologic analysis of 13 cases. Am. J. Surg. Pathol. 2005, 29, 927–934. [Google Scholar] [CrossRef]
- Shintaku, M. Immunohistochemical localization of autophagosomal membrane-associated protein LC3 in granular cell tumor and schwannoma. Virchows Arch. 2011, 459, 315–319. [Google Scholar] [CrossRef]
- Filie, A.C.; Lage, J.M.; Azumi, N. Immunoreactivity of S100 protein, alpha-1-antitrypsin, and CD68 in adult and congenital granular cell tumors. Mod. Pathol. 1996, 9, 888–892. [Google Scholar]
- Kanczuga-Koda, L.; Sulkowski, S.; Lenczewski, A.; Koda, M.; Wincewicz, A.; Baltaziak, M.; Sulkowska, M. Increased expression of connexins 26 and 43 in lymph node metastases of breast cancer. J. Clin. Pathol. 2006, 59, 429–433. [Google Scholar] [CrossRef]
- Nomura, S.; Maeda, K.; Noda, E.; Inoue, T.; Fukunaga, S.; Nagahara, H.; Hirakawa, K. Clinical significance of the expression of connexin26 in colorectal cancer. J. Exp. Clin. Cancer Res. 2010, 29, 79. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Li, Z.J.; Chen, X.H. Up-regulation of Cx43 expression and GJIC function in acute leukemia bone marrow stromal cells post-chemotherapy. Leuk. Res. 2010, 34, 631–640. [Google Scholar] [CrossRef]
- Zhang, D.; Kaneda, M.; Nakahama, K.; Arii, S.; Morita, I. Connexin 43 expression promotes malignancy of HuH7 hepatocellular carcinoma cells via the inhibition of cell-cell communication. Cancer Lett. 2007, 252, 208–215. [Google Scholar] [CrossRef]
- Chen, J.T.; Cheng, Y.W.; Chou, M.C.; Sen-Lin, T.; Lai, W.W.; Ho, W.L.; Lee, H. The correlation between aberrant connexin 43 mRNA expression induced by promoter methylation and nodal micrometastasis in non-small cell lung cancer. Clin. Cancer Res. 2003, 9, 4200–4204. [Google Scholar]
- Krutovskikh, V.; Mazzoleni, G.; Mironov, N.; Omori, Y.; Aguelon, A.M.; Mesnil, M.; Berger, F.; Partensky, C.; Yamasaki, H. Altered homologous and heterologous gap-junctional intercellular communication in primary human liver tumors associated with aberrant protein localization but not gene mutation of connexin 32. Int. J. Cancer 1994, 56, 87–94. [Google Scholar] [CrossRef]
- Krutovskikh, V.A.; Troyanovsky, S.M.; Piccoli, C.; Tsuda, H.; Asamoto, M.; Yamasaki, H. Differential effect of subcellular localization of communication impairing gap junction protein connexin43 on tumor cell growth in vivo. Oncogene 2000, 19, 505–513. [Google Scholar] [CrossRef]
- Tang, B.; Peng, Z.H.; Yu, P.W.; Yu, G.; Qian, F. Expression and significance of Cx43 and E-cadherin in gastric cancer and metastatic lymph nodes. Med. Oncol. 2011, 28, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Hao, M.L.; Sun, Y.; Wang, Z.J.; Li, J.L. Ultrastructure of gap junction and Cx43 expression in gastric cancer tissues of the patients. Arch. Med. Sci. 2020, 16, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.L.; Wang, B.R.; Chen, G.Q.; Li, G.H.; Xu, Y.Y. Clinical significance of vascular endothelial growth factor and connexin43 for predicting pancreatic cancer clinicopathologic parameters. Med. Oncol. 2010, 27, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Kazan, J.M.; El-Saghir, J.; Saliba, J.; Shaito, A.; Jalaleddine, N.; El-Hajjar, L.; Al-Ghadban, S.; Yehia, L.; Zibara, K.; El-Sabban, M. Cx43 expression correlates with breast cancer metastasis in MDA-MB-231 cells in vitro, in a mouse xenograft model and in human breast cancer tissues. Cancers 2019, 11, 460. [Google Scholar] [CrossRef]
- Savic, I.; Milovanovic, P.; Opric, S.; Ivanovic, N.; Oprić, D. Expression of connexin-43 in surgical resections of primary tumor and lymph node metastases of squamous cell carcinoma and adenocarcinoma of the lung: A retrospective study. PeerJ 2022, 10, e13055. [Google Scholar] [CrossRef]
- Fernandez-Flores, A.; Varela-Vazquez, A.; Mayan, M.D.; Fonseca, E. Expression of connexin 43 by atypical fibroxanthoma. J. Cutan. Pathol. 2021, 48, 247–254. [Google Scholar] [CrossRef]
- Cogliati, B.; Maes, M.; Pereira, I.V.; Willebrords, J.; Da Silva, T.C.; Crespo Yanguas, S.; Vinken, M. Immunohisto- and Cytochemistry Analysis of Connexins. In Methods in Molecular Biology; Springer: New York, NY, USA, 2016; Volume 1437, pp. 55–70. [Google Scholar]
- Fletcher, C.D.; Berman, J.J.; Corless, C.; Gorstein, F.; Lasota, J.; Longley, B.J.; Miettinen, M.; O’Leary, T.J.; Remotti, H.; Rubin, B.P.; et al. Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum. Pathol. 2002, 33, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Shao, Q.; Igdoura, S.A.; Alaoui-Jamali, M.A.; Laird, D.W. Lysosomal and proteasomal degradation play distinct roles in the life cycle of Cx43 in gap junctional intercellular communication-deficient and -competent breast tumor cells. J. Biol. Chem. 2003, 278, 30005–30014. [Google Scholar] [CrossRef] [PubMed]
- Kam, C.Y.; Dubash, A.D.; Magistrati, E.; Polo, S.; Satchell, K.J.; Sheikh, F.; Lampe, P.D.; Green, K.J. Desmoplakin maintains gap junctions by inhibiting Ras/MAPK and lysosomal degradation of connexin-43. J. Cell Biol. 2018, 217, 3219–3235. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Shao, Q.; Belliveau, D.J.; Laird, D.W. Aggregated DsRed-tagged Cx43 and over-expressed Cx43 are targeted to lysosomes in human breast cancer cells. Cell Commun. Adhes. 2001, 8, 433–439. [Google Scholar] [CrossRef]
- Pareja, F.; Brandes, A.H.; Basili, T.; Selenica, P.; Geyer, F.C.; Fan, D.; Da Cruz Paula, A.; Kumar, R.; Brown, D.N.; Gularte-Mérida, R.; et al. Loss-of-function mutations in ATP6AP1 and ATP6AP2 in granular cell tumors. Nat. Commun. 2018, 9, 3533. [Google Scholar] [CrossRef] [PubMed]
- Sekimizu, M.; Yoshida, A.; Mitani, S.; Asano, N.; Hirata, M.; Kubo, T.; Yamazaki, F.; Sakamoto, H.; Kato, M.; Makise, N.; et al. Frequent mutations of genes encoding vacuolar H+-ATPase components in granular cell tumors. Genes Chromosomes Cancer 2019, 58, 373–380. [Google Scholar] [CrossRef]
Entity | Age [Years] | Sex | Localization | Pattern | Intensity |
---|---|---|---|---|---|
GCT-1 | 4 | M | Perianal | D, C | strong |
GCT-2 | 39 | F | Lip | D, C | strong |
GCT-3 | 23 | M | Forearm | D, C | strong |
GCT-4 | 18 | F | Trunk | D, C | moderate |
GCT-5 | 71 | F | Thigh | D, C | moderate |
GCT-6 | 49 | F | Thigh | D, C | strong |
GCT-7 | 26 | F | Breast | D, C | moderate |
GCT-8 | 8 | F | Hand | D, C | strong |
GCT-9 | 58 | M | Neck | D, C | strong |
GCT-10 | 64 | M | Neck | D, C | moderate |
GCT-11 | 40 | M | Back | D, C | strong |
GCT-12 | 44 | M | Back | D, C | strong |
GCT-13 | 50 | F | Breast | D, C | moderate |
GCT-14 | 52 | F | Trunk | D, C | strong |
GCT-15 | 71 | M | Leg | D, C | strong |
GCT-16 | 40 | F | Tongue | D, C | moderate |
GCT-17 | 41 | F | Tongue | D, C | strong |
GCT-18 | 42 | F | Tongue | D, C | moderate |
GCT-19 | 23 | F | Tongue | D, C | moderate |
GCT-20 | 48 | F | Esophagus | D, C | moderate |
GCT-21 | 51 | F | Esophagus | D, C | strong |
GCT-22 | 23 | F | Esophagus | D, C | moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kneitz, H.; Frings, V.; Kircher, S.; Goebeler, M. Expression of Connexin 43 in Granular Cell Tumors of the Skin, Tongue and Esophagus. Dermatopathology 2023, 10, 184-192. https://doi.org/10.3390/dermatopathology10020026
Kneitz H, Frings V, Kircher S, Goebeler M. Expression of Connexin 43 in Granular Cell Tumors of the Skin, Tongue and Esophagus. Dermatopathology. 2023; 10(2):184-192. https://doi.org/10.3390/dermatopathology10020026
Chicago/Turabian StyleKneitz, Hermann, Verena Frings, Stefan Kircher, and Matthias Goebeler. 2023. "Expression of Connexin 43 in Granular Cell Tumors of the Skin, Tongue and Esophagus" Dermatopathology 10, no. 2: 184-192. https://doi.org/10.3390/dermatopathology10020026
APA StyleKneitz, H., Frings, V., Kircher, S., & Goebeler, M. (2023). Expression of Connexin 43 in Granular Cell Tumors of the Skin, Tongue and Esophagus. Dermatopathology, 10(2), 184-192. https://doi.org/10.3390/dermatopathology10020026