Surface Acoustic Wave Humidity Sensor: A Review
Abstract
:1. Introduction
2. Sensing Mechanism
3. Sensing Materials
3.1. Polymers
Configuration | Substrate | Frequency (MHz) | Polymer | Deposition Technique | Operational Mechanism | Ref |
---|---|---|---|---|---|---|
Delay line | 128° YX liNbO3 | 30 | Polystyrene sulfonate acid sodium | - | Acoustoelectric | [52] |
Delay line | Quartz | 80 | PI | Spin coating | Mass loading | [43] |
Delay line | YZ-cut LiNbO3 | 50 | PolyXIO | Drop coating | Mass and Viscoelastic loading | [30] |
Delay line | ZnO/SiO2/Si | - | Platinum polyyne (Pt-P-HDOB) | Spin coating | - | [47] |
Delay line | YZ-cut LiNbO3 | 250 | PVP | Spin coating | Mass and Viscoelastic loading | [31] |
Two port resonator | ST-X Quartz | 300 | PANI | Spin coating | Viscoelastic and electric loading | [45] |
Two port resonator | Quartz | 194 | Nafion | Electrospray and thermal evaporation | - | [58] |
Two port resonator | ST-X cut Quartz | 433 | Polyelectrolyte APTS-P | Electrospray | Mass, electric, and viscoelastic | [59] |
One port resonator | ST Quartz | 434 | Nafion | Spin coating | Mass and Viscoelastic loading | [32] |
One port resonator | AlN/SOI | 153 | Fluorinated PI | Spin coating | Mass and stiffening effect | [33] |
Delay line | 128° YX liNbO3 | 138 | PDEP | Langmuir-Blodgett (LB) | Mass loading | [50] |
Delay line | 128° YX liNbO3 | 138 | NaSPF | Spin coating | Mass and electric loading | [50] |
One port resonator | - | 433.92 | PVA | Dip coating | - | [55] |
Delay line | 128° YX liNbO3 | 30 | PVA | Dip coating | Mass, electric, and viscoelastic | [56] |
3.2. Metal Oxides and Ceramics
3.3. Nanostructured and Carbon Based
4. Practical Application Cases
5. Influence of the Sensing Film on the Characteristics of the SAW Device
6. Recommendations for Future Development of SAW Humidity Sensors
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rizvi, S.S.H.; Perdue, R.R. Requirements for Foods Packaged in Polymeric Films. Crit. Rev. Food Sci. Nutr. 1981, 14, 111–134. [Google Scholar] [CrossRef]
- Podczeck, F.; Newton, J.M.; James, M.B. The Influence of Constant and Changing Relative Humidity of the Air on the Autoadhesion Force between Pharmaceutical Powder Particles. Int. J. Pharm. 1996, 145, 221–229. [Google Scholar] [CrossRef]
- Yam, K.L.; Takhistov, P.T.; Miltz, J. Intelligent Packaging: Concepts and Applications. J. Food Sci. 2005, 70, R1–R10. [Google Scholar] [CrossRef]
- Bridgeman, D.; Corral, J.; Quach, A.; Xian, X.; Forzani, E. Colorimetric Humidity Sensor Based on Liquid Composite Materials for the Monitoring of Food and Pharmaceuticals. Langmuir 2014, 30, 10785–10791. [Google Scholar] [CrossRef]
- Chen, W.-P.; Zhao, Z.-G.; Liu, X.-W.; Zhang, Z.-X.; Suo, C.-G. A Capacitive Humidity Sensor Based on Multi-Wall Carbon Nanotubes (MWCNTs). Sensors 2009, 9, 7431–7444. [Google Scholar] [CrossRef]
- Bi, H.; Yin, K.; Xie, X.; Ji, J.; Wan, S.; Sun, L.; Terrones, M.; Dresselhaus, M.S. Ultrahigh Humidity Sensitivity of Graphene Oxide. Sci. Rep. 2013, 3, 2714. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, X.; Guo, H.; Wu, Z.; Li, X. Humidity Sensing Behaviors of Graphene Oxide-Silicon Bi-Layer Flexible Structure. Sens. Actuators B Chem. 2012, 161, 1053–1058. [Google Scholar] [CrossRef]
- Zhang, D.; Tong, J.; Xia, B. Humidity-Sensing Properties of Chemically Reduced Graphene Oxide/Polymer Nanocomposite Film Sensor Based on Layer-by-Layer Nano Self-Assembly. Sens. Actuators B Chem. 2014, 197, 66–72. [Google Scholar] [CrossRef]
- Liu, Y.J.; Shi, J.; Zhang, F.; Liang, H.; Xu, J.; Lakhtakia, A.; Fonash, S.J.; Huang, T.J. High-Speed Optical Humidity Sensors Based on Chiral Sculptured Thin Films. Sens. Actuators B Chem. 2011, 156, 593–598. [Google Scholar] [CrossRef]
- Chen, M.; Xue, S.; Liu, L.; Li, Z.; Wang, H.; Tan, C.; Yang, J.; Hu, X.; Jiang, X.-F.; Cheng, Y.; et al. A Highly Stable Optical Humidity Sensor. Sens. Actuators B Chem. 2019, 287, 329–337. [Google Scholar] [CrossRef]
- Yuan, Z.; Tai, H.; Ye, Z.; Liu, C.; Xie, G.; Du, X.; Jiang, Y. Novel Highly Sensitive QCM Humidity Sensor with Low Hysteresis Based on Graphene Oxide (GO)/Poly(Ethyleneimine) Layered Film. Sens. Actuators B Chem. 2016, 234, 145–154. [Google Scholar] [CrossRef]
- Xuan, W.; Cole, M.; Gardner, J.W.; Thomas, S.; Villa-López, F.-H.; Wang, X.; Dong, S.; Luo, J. A Film Bulk Acoustic Resonator Oscillator Based Humidity Sensor with Graphene Oxide as the Sensitive Layer. J. Micromech. Microeng. 2017, 27, 055017. [Google Scholar] [CrossRef]
- Le, X.; Liu, Y.; Peng, L.; Pang, J.; Xu, Z.; Gao, C.; Xie, J. Surface Acoustic Wave Humidity Sensors Based on Uniform and Thickness Controllable Graphene Oxide Thin Films Formed by Surface Tension. Microsyst. Nanoeng. 2019, 5, 36. [Google Scholar] [CrossRef]
- Pang, J.; Le, X.; Xu, Z.; Gao, C.; Xie, J. A Humidity Sensor Based on AlN Lamb Wave Resonator Coated with Graphene Oxide of Different Concentrations. J. Micromech. Microeng. 2018, 28, 105016. [Google Scholar] [CrossRef]
- Cicek, P.-V.; Saha, T.; Waguih, B.; Nabki, F.; El-Gamal, M.N. Design of a Low-Cost MEMS Monolithically-Integrated Relative Humidity Sensor. In Proceedings of the 2010 International Conference on Microelectronics, Cairo, Egypt, 19–22 December 2010; pp. 172–175. [Google Scholar]
- Alwis, L.; Sun, T.; Grattan, K.T.V. Optical Fibre-Based Sensor Technology for Humidity and Moisture Measurement: Review of Recent Progress. Measurement 2013, 46, 4052–4074. [Google Scholar] [CrossRef]
- Rao, X.; Zhao, L.; Xu, L.; Wang, Y.; Liu, K.; Wang, Y.; Chen, G.Y.; Liu, T.; Wang, Y. Review of Optical Humidity Sensors. Sensors 2021, 21, 8049. [Google Scholar] [CrossRef]
- Chen, G.Y.; Lancaster, D.G.; Monro, T.M. Optical Microfiber Technology for Current, Temperature, Acceleration, Acoustic, Humidity and Ultraviolet Light Sensing. Sensors 2018, 18, 72. [Google Scholar] [CrossRef]
- Materials Characterization Using Surface Acoustic Wave Devices: Applied Spectroscopy Reviews: Vol 26, No 1-2. Available online: https://www.tandfonline.com/doi/abs/10.1080/05704929108053461 (accessed on 10 October 2022).
- Buff, W. SAW Sensors for Direct and Remote Measurement. In Proceedings of the 2002 IEEE Ultrasonics Symposium, Munich, Germany, 8–11 October 2002; Volume 1, pp. 435–443. [Google Scholar]
- Devkota, J.; Ohodnicki, P.R.; Greve, D.W. SAW Sensors for Chemical Vapors and Gases. Sensors 2017, 17, 801. [Google Scholar] [CrossRef]
- Memon, M.M.; Pan, S.; Wan, J.; Wang, T.; Zhang, W. Highly Sensitive Thick Diaphragm-Based Surface Acoustic Wave Pressure Sensor. Sens. Actuators A Phys. 2021, 331, 112935. [Google Scholar] [CrossRef]
- Memon, M.M.; Pan, S.; Wan, J.; Wang, T.; Peng, B.; Zhang, W. Sensitivity Enhancement of SAW Pressure Sensor Based on the Crystalline Direction. IEEE Sens. J. 2022, 22, 9329–9335. [Google Scholar] [CrossRef]
- Pan, S.; Memon, M.M.; Wan, J.; Wang, T.; Zhang, W. The Influence of Pressure on the TCF of AlN-Based SAW Pressure Sensor. IEEE Sens. J. 2022, 22, 3097–3104. [Google Scholar] [CrossRef]
- Viespe, C.; Grigoriu, C. Surface Acoustic Wave Sensors with Carbon Nanotubes and SiO2/Si Nanoparticles Based Nanocomposites for VOC Detection. Sens. Actuators B Chem. 2010, 147, 43–47. [Google Scholar] [CrossRef]
- Oh, H.; Lee, K.J.; Yang, S.S.; Lee, K. Development of Novel Dual-Axis Sensing Gyroscope Using Surface Acoustic Wave. Microelectron. Eng. 2012, 97, 259–264. [Google Scholar] [CrossRef]
- Ricco, A.J.; Martin, S.J. Thin Metal Film Characterization and Chemical Sensors: Monitoring Electronic Conductivity, Mass Loading and Mechanical Properties with Surface Acoustic Wave Devices. Thin Solid Film. 1991, 206, 94–101. [Google Scholar] [CrossRef]
- Cheeke, J.D.N.; Tashtoush, N.; Eddy, N. Surface Acoustic Wave Humidity Sensor Based on the Changes in the Viscoelastic Properties of a Polymer Film. In Proceedings of the 1996 IEEE Ultrasonics Symposium, San Antonio, TX, USA, 3–6 November 1996; Volume 1, pp. 449–452. [Google Scholar]
- Martin, S.J.; Frye, G.C. Surface Acoustic Wave Response to Changes in Viscoelastic Film Properties. Appl. Phys. Lett. 1990, 57, 1867–1869. [Google Scholar] [CrossRef]
- Tashtoush, N.M.; Cheeke, J.D.N.; Eddy, N. Surface Acoustic Wave Humidity Sensor Based on a Thin PolyXIO Film. Sens. Actuators B Chem. 1998, 49, 218–225. [Google Scholar] [CrossRef]
- Buvailo, A.; Xing, Y.; Hines, J.; Borguet, E. Thin Polymer Film Based Rapid Surface Acoustic Wave Humidity Sensors. Sens. Actuators B Chem. 2011, 156, 444–449. [Google Scholar] [CrossRef]
- Antcev, I.; Bogoslovsky, S.; Derkach, M.; Sapozhnikov, G.; Zhgoon, S. Choice of SAW Humidity Sensor Coatings. In Proceedings of the 2018 European Frequency and Time Forum (EFTF), Torino, Italy, 10–12 April 2018; pp. 105–108. [Google Scholar]
- Memon, M.; Hongyuan, Y.; Pan, S.; Wang, T.; Zhang, W. Surface Acoustic Wave Humidity Sensor Based on Hydrophobic Polymer Film. J. Electron. Mater. 2022, 51, 5627–5634. [Google Scholar] [CrossRef]
- Galipeau, D.W.; Vetelino, J.F.; Feger, C. The Study of Polyimide Film Properties and Adhesion Using a Surface Acoustic Wave Sensor. J. Plast. Film Sheeting 1992, 8, 258–272. [Google Scholar] [CrossRef]
- Korotcenkov, G. Handbook of Humidity Measurement. In Volume 2: Electronic and Electrical Humidity Sensors; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-1-351-40056-5. [Google Scholar]
- Arman Kuzubasoglu, B. Recent Studies on the Humidity Sensor: A Mini Review. ACS Appl. Electron. Mater. 2022, 4, 4797–4807. [Google Scholar] [CrossRef]
- Phan, D.T.; Chung, G.S. FEM Modeling SAW Humidity Sensor Based on ZnO/IDTs/AlN/Si Structures. In Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; pp. 1160–1163. [Google Scholar]
- Tang, Y.; Li, Z.; Ma, J.; Wang, L.; Yang, J.; Du, B.; Yu, Q.; Zu, X. Highly Sensitive Surface Acoustic Wave (SAW) Humidity Sensors Based on Sol–Gel SiO2 Films: Investigations on the Sensing Property and Mechanism. Sens. Actuators B Chem. 2015, 215, 283–291. [Google Scholar] [CrossRef]
- Su, Y.; Li, C.; Li, M.; Li, H.; Xu, S.; Qian, L.; Yang, B. Surface Acoustic Wave Humidity Sensor Based on Three-Dimensional Architecture Graphene/PVA/SiO2 and Its Application for Respiration Monitoring. Sens. Actuators B Chem. 2020, 308, 127693. [Google Scholar] [CrossRef]
- Yan, X.; Li, C.; Zhao, L.; Tian, S.; Zhang, Z.; Li, M.; Li, H.; Qian, L.; Gong, X.; Huang, Y.; et al. Surface Acoustic Wave Relative Humidity Sensor Based on Sputtering SiO2 Film. Surf. Interface Anal. 2021, 53, 867–875. [Google Scholar] [CrossRef]
- Wu, T.-T.; Chen, Y.-Y.; Chou, T.-H. A High Sensitivity Nanomaterial Based SAW Humidity Sensor. J. Phys. D Appl. Phys. 2008, 41, 085101. [Google Scholar] [CrossRef]
- Li, D.J.; Zhao, C.; Fu, Y.Q.; Luo, J.K. Engineering Silver Nanostructures for Surface Acoustic Wave Humidity Sensors Sensitivity Enhancement. J. Electrochem. Soc. 2014, 161, B151. [Google Scholar] [CrossRef]
- Story, P.R.; Galipeau, D.W.; Mileham, R.D. A Study of Low-Cost Sensors for Measuring Low Relative Humidity. Sens. Actuators B Chem. 1995, 25, 681–685. [Google Scholar] [CrossRef]
- Penza, M.; Cassano, G. Relative Humidity Sensing by PVA-Coated Dual Resonator SAW Oscillator. Sens. Actuators B Chem. 2000, 68, 300–306. [Google Scholar] [CrossRef]
- Wang, W.; Xie, X.; He, S. Optimal Design of a Polyaniline-Coated Surface Acoustic Wave Based Humidity Sensor. Sensors 2013, 13, 16816–16828. [Google Scholar] [CrossRef]
- Kwan, J.K.; Sit, J.C. High Sensitivity Love-Wave Humidity Sensors Using Glancing Angle Deposited Thin Films. Sens. Actuators B Chem. 2012, 173, 164–168. [Google Scholar] [CrossRef]
- Caliendo, C.; Fratoddi, I.; Russo, M.V. Sensitivity of a Platinum-Polyyne-Based Sensor to Low Relative Humidity and Chemical Vapors. Appl. Phys. Lett. 2002, 80, 4849–4851. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Kao, H.-L. Humidity Sensors Made on Polyvinyl-Alcohol Film Coated SAW Devices. Electron. Lett. 2006, 42, 948–949. [Google Scholar] [CrossRef]
- Hoyt, A.E.; Ricco, A.J.; Bartholomew, J.W.; Osbourn, G.C. SAW Sensors for the Room-Temperature Measurement of CO2 and Relative Humidity. Anal. Chem. 1998, 70, 2137–2145. [Google Scholar] [CrossRef]
- Li, Y.; Yang, M.; Ling, M.; Zhu, Y. Surface Acoustic Wave Humidity Sensors Based on Poly(p-Diethynylbenzene) and Sodium Polysulfonesulfonate. Sens. Actuators B Chem. 2007, 122, 560–563. [Google Scholar] [CrossRef]
- Kawalec, A.; Pasternak, M. A New High-Frequency Surface Acoustic Wave Sensor for Humidity Measurement. IEEE Trans. Instrum. Meas. 2008, 57, 2019–2023. [Google Scholar] [CrossRef]
- Nomura, T.; Oobuchi, K.; Furukawa, T.Y. Measurement of Humidity Using Surface Acoustic Wave Device. Jpn. J. Appl. Phys. 1992, 31, 3070. [Google Scholar] [CrossRef]
- Nomura, T.; Oofuchi, K.; Yasuda, T.; Furukawa, S. SAW Humidity Sensor Using Dielectric Hygroscopic Polymer Film. In Proceedings of the 1994 Proceedings of IEEE Ultrasonics Symposium, Cannes, France, 31 October–3 November 1994; Volume 1, pp. 503–506. [Google Scholar]
- Galipeau, D.W.; Vetelino, J.F.; Feger, C. Adhesion Studies of Polyimide Films Using a Surface Acoustic Wave Sensor. J. Adhes. Sci. Technol. 1993, 7, 1335–1345. [Google Scholar] [CrossRef]
- Alam, S.; Islam, T.; Mittal, U. A Sensitive Inexpensive SAW Sensor for Wide Range Humidity Measurement. IEEE Sens. J. 2020, 20, 546–551. [Google Scholar] [CrossRef]
- Ndao, S.; Duquennoy, M.; Courtois, C.; Ouaftouh, M.; Rguiti, M.; Smagin, N. Sensitivity Range Optimization of Surface Acoustic Wave Humidity Ultrasonic Sensors Incorporating a Polyvinyl Alcohol (PVA) Layer. In Proceedings of the 2019 IEEE SENSORS, Montreal, QC, Canada, 27–30 October 2019; pp. 1–4. [Google Scholar]
- Joshi, S.G.; Brace, J.G. Measurement of Humidity Using Surface Acoustic Waves. In Proceedings of the IEEE 1985 Ultrasonics Symposium, San Francisco, CA, USA, 16–18 October 1985; pp. 600–603. [Google Scholar]
- Jasek, K.; Pasternak, M.; Grabka, M.; Neffe, S.; Zasada, D. Deposition of Polymer Sensor Films on SAW Surface by Electrospraying Technology. Arch. Acoust. 2017, 42, 507. [Google Scholar] [CrossRef]
- Li, Y.; Li, P.; Yang, M.; Lei, S.; Chen, Y.; Guo, X. A Surface Acoustic Wave Humidity Sensor Based on Electrosprayed Silicon-Containing Polyelectrolyte. Sens. Actuators B Chem. 2010, 145, 516–520. [Google Scholar] [CrossRef]
- Hong, H.-S.; Chung, G.-S. Surface Acoustic Wave Humidity Sensor Based on Polycrystalline AlN Thin Film Coated with Sol–Gel Derived Nanocrystalline Zinc Oxide Film. Sens. Actuators B Chem. 2010, 148, 347–352. [Google Scholar] [CrossRef]
- Hong, H.-S.; Chung, G.-S. Humidity Sensing Characteristics of Ga-Doped Zinc Oxide Film Grown on a Polycrystalline AlN Thin Film Based on a Surface Acoustic Wave. Sens. Actuators B Chem. 2010, 150, 681–685. [Google Scholar] [CrossRef]
- Hong, H.-S.; Phan, D.-T.; Chung, G.-S. High-Sensitivity Humidity Sensors with ZnO Nanorods Based Two-Port Surface Acoustic Wave Delay Line. Sens. Actuators B Chem. 2012, 171–172, 1283–1287. [Google Scholar] [CrossRef]
- Hong, H.-S.; Chung, G.-S. Controllable Growth of Oriented ZnO Nanorods Using Ga-Doped Seed Layers and Surface Acoustic Wave Humidity Sensor. Sens. Actuators B Chem. 2014, 195, 446–451. [Google Scholar] [CrossRef]
- Mittal, U.; Islam, T.; Nimal, A.T.; Sharma, M.U. A Novel Sol–Gel $\gamma $ -Al2O3 Thin-Film-Based Rapid SAW Humidity Sensor. IEEE Trans. Electron Devices 2015, 62, 4242–4250. [Google Scholar] [CrossRef]
- Alam, S.; Mittal, U.; Islam, T. The Oxide Film-Coated Surface Acoustic Wave Resonators for the Measurement of Relative Humidity. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Lin, Q.; Li, Y.; Yang, M. Highly Sensitive and Ultrafast Response Surface Acoustic Wave Humidity Sensor Based on Electrospun Polyaniline/Poly(Vinyl Butyral) Nanofibers. Anal. Chim. Acta 2012, 748, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Dajing, C.; Yuquan, C. A Surface Acoustic Wave Humidity Sensor with High Sensitivity Based on Electrospun MWCNT/Nafion Nanofiber Films. Nanotechnology 2011, 22, 265504. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, H.; Wang, L.; Liu, B.; Cai, D.; Wang, D.; Wang, C.; Li, H.; Wang, Y.; Xie, W.; et al. Enhanced Sensitivity of a GHz Surface Acoustic Wave Humidity Sensor Based on Ni(SO4)0.3(OH)1.4 Nanobelts and NiO Nanoparticles. J. Mater. Chem. C 2015, 3, 9902–9909. [Google Scholar] [CrossRef]
- Rimeika, R.; Čiplys, D.; Poderys, V.; Rotomskis, R.; Shur, M.S. Fast-Response and Low-Loss Surface Acoustic Wave Humidity Sensor Based on Bovine Serum Albumin-Gold Nanoclusters Film. Sens. Actuators B Chem. 2017, 239, 352–357. [Google Scholar] [CrossRef]
- Sayar Irani, F.; Tunaboylu, B. SAW Humidity Sensor Sensitivity Enhancement via Electrospraying of Silver Nanowires. Sensors 2016, 16, 2024. [Google Scholar] [CrossRef]
- Buvailo, A.I.; Xing, Y.; Hines, J.; Dollahon, N.; Borguet, E. TiO(2)/LiCl-Based Nanostructured Thin Film for Humidity Sensor Applications. ACS Appl. Mater. Interfaces 2011, 3, 528–533. [Google Scholar] [CrossRef]
- Lu, L.; Liu, J.; Li, Q.; Yi, Z.; Liu, J.; Wang, X.; Chen, X.; Yang, B. High Performance SnO2/MoS2-Based Surface Acoustic Wave Humidity Sensor With Good Linearity. IEEE Sens. J. 2019, 19, 11027–11033. [Google Scholar] [CrossRef]
- Dong, H.; Li, D.; Pang, J.; Zhang, Q.; Xie, J. Highly Sensitive and Fast-Response Humidity Sensor Based On Saw Resonator and MoS2 for Human Activity Detection. In Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), Virtual, 25–29 January 2021; pp. 322–325. [Google Scholar]
- Li, X.; Tan, Q.; Qin, L.; Zhang, L.; Liang, X.; Yan, X. A High-Sensitivity MoS2/Graphene Oxide Nanocomposite Humidity Sensor Based on Surface Acoustic Wave. Sens. Actuators A Phys. 2022, 341, 113573. [Google Scholar] [CrossRef]
- Balashov, S.M.; Balachova, O.V.; Filho, A.P.; Bazetto, M.C.Q.; Almeida, M.G. de Surface Acoustic Wave Humidity Sensors Based on Graphene Oxide Thin Films Deposited with the Surface Acoustic Wave Atomizer. ECS Trans. 2012, 49, 445. [Google Scholar] [CrossRef]
- Wang, J.L.; Guo, Y.J.; Li, D.J.; Long, G.D.; Tang, Q.B.; Zu, X.T.; Ma, J.Y.; Du, B.; Tang, Y.L.; Torun, H.; et al. Bacterial Cellulose Coated ST-Cut Quartz Surface Acoustic Wave Humidity Sensor with High Sensitivity, Fast Response and Recovery. Smart Mater. Struct. 2020, 29, 045037. [Google Scholar] [CrossRef]
- Le, X.; Wang, X.; Pang, J.; Liu, Y.; Fang, B.; Xu, Z.; Gao, C.; Xu, Y.; Xie, J. A High Performance Humidity Sensor Based on Surface Acoustic Wave and Graphene Oxide on AlN/Si Layered Structure. Sens. Actuators B Chem. 2018, 255, 2454–2461. [Google Scholar] [CrossRef]
- Rimeika, R.; Čiplys, D.; Poderys, V.; Rotomskis, R.; Shur, M.S. Fast-Response Surface Acoustic Wave Humidity Sensor Based on Hematoporphyrin Film. Sens. Actuators B Chem. 2009, 137, 592–596. [Google Scholar] [CrossRef]
- Lu, D.; Zheng, Y.; Penirschke, A.; Jakoby, R. Highly Sensitive Dual-Mode Relative Humidity Sensor Based on Integrated SAW and LC Resonators. Electron. Lett. 2015, 51, 1219–1220. [Google Scholar] [CrossRef]
- Lu, D.; Zheng, Y.; Penirschke, A.; Jakoby, R. Humidity Sensors Based on Photolithographically Patterned PVA Films Deposited on SAW Resonators. IEEE Sens. J. 2016, 16, 13–14. [Google Scholar] [CrossRef]
- Powell, D.A.; Kalantar-zadeh, K.; Wlodarski, W. Spatial Sensitivity Distribution of Surface Acoustic Wave Resonator Sensors. IEEE Sens. J. 2007, 7, 204–212. [Google Scholar] [CrossRef]
- Hao, W.; Liu, J.; Liu, M.; Liang, Y.; He, S. Mass Sensitivity Optimization of a Surface Acoustic Wave Sensor Incorporating a Resonator Configuration. Sensors 2016, 16, 562. [Google Scholar] [CrossRef] [PubMed]
Sensing Technique | Basic Mechanism | Advantages | Disadvantages |
---|---|---|---|
Capacitive | Change in the capacitance value due to change in the permittivity of sensing film with the interaction of water vapor molecules | Low power consumption, low cost, simple readout circuit, nonmoving structures, ability to detect the humidity in the entire range, 0–100% range [15] | Temperature dependency, hysteresis issues, and non-linear response |
Resistive | Alteration in resistance of sensing membrane when it comes in contact with the water molecules | Simple structure, low cost, and high interchangeability | Temperature dependency, high nonlinearity, poor repeatability, highly sensitive to other contaminants |
Optical | Variation in refractive index with the absorption of water molecules | High sensitivity, thermal stability, low attenuation, and chemical inertness [16] | Bulky, high cost [17,18] |
SAW | Change in frequency shift due to change in mechanical stiffness and mass of sensing film induced by humidity changes | High sensitivity, high accuracy, low cost, miniaturized, low power consumption | Design challenges associated with temperature sensitivity |
Category | Material | Range (%RH) | Total Shift Δf (kHz) | Sensitivity (kHz/%RH) | Response Time (s) | Recovery Time (s) | Hysteresis (%) | Ref |
---|---|---|---|---|---|---|---|---|
Polymer | PDEB | 20–85 | - | 0.4 | - | - | - | [50] |
NaSPF | 20–85 | - | 1.1 | - | - | - | [50] | |
Polyelectrolyte APTS-P | 11–97 | - | 0.4 | 10 | 10 | - | [59] | |
PVP | 5–95 | - | - | 1.5 | 2.5 | - | [31] | |
1% PVA | 0–99.4 | - | 4.52 4.97 7.35 | 30 31 35 | 40 40 46 | 0.0003 | [55] | |
2% PVA | 0–99.2 | 0.001 | ||||||
5% PVA | 0–98.8 | 0.003 | ||||||
2.5% PVA | 60–98 | - | - | - | - | 1.96 | [56] | |
5% PVA | 10–98 | 0.26 | ||||||
10% PVA | 10–95 | 0.01 | ||||||
Fluorinated PI | 10–90 | 332 | 4.15 | 7 | 13 | - | [33] | |
Nafion | 5–95 | - | 4.5–5 at 0 °C | - | - | ±2 at 0 °C | [32] | |
6.5–7 at 60 °C | ±1 at 0 °C | |||||||
Metal Oxide | ZnO | 10–90 | 160 | - | - | - | - | [60] |
Ga doped ZnO | 10–90 | 420 | - | - | - | - | [61] | |
Co3O4 | 30–93 | 50 | - | 3 | - | [38] | ||
TiO2 | 30–93 | 125 | - | - | - | - | [38] | |
CuO | 30–93 | 30 | - | 50 | - | [38] | ||
ZnO | 30–93 | 40 | - | - | - | - | [38] | |
Ceramics | γ-Al2O3 | 3–85 | 80 | 0.94 | 1 | 3 | 0.3 | [64] |
SiO2 | 30–93 | 520 | - | <10 | <10 | - | [38] | |
Al2O3 | 0–95 | - | 8.67 | 50 | 50 | 0.5 | [65] | |
SiO2 | 10–80 | - | 1.14 | 6 | 21.3 | - | [40] | |
Nanostructutuerd | PANI nanofiber | 5–90 | 300 | - | - | - | - | [41] |
PANI/PVB nanofiber | 20–90 | - | 75 | 1 | 2 | - | [66] | |
MWCNT/Nafion nanofiber | 10–80 | - | 427.6 | ∼3 s@63% | ∼3 s@63% | <1 | [67] | |
ZnO nanorods | 10–90 | 750 | 3.5 in 10–50 15.25 in 50–90 | - | - | - | [62] | |
ZnO nanorods on Ga-doped ZnO seed layer | 10–90 | 970 | 7.4 in 10–50 16.75 50–90 | - | - | - | [63] | |
NSOH nanobelts | 11–85 | 2950 | - | 21 | 10 | - | [68] | |
NiO nanoparticles | 11–85 | 5810 | 23 | 4 | - | [68] | ||
SnO2/MoS2 nanocomsposite | 10–90 | - | 0.78 | - | - | - | [72] | |
MoS2 nanomaterial | 10–90 | - | 12.41 | 0.4 | 0.8 | 4.32 | [73] | |
Bacterial cellulose | 10–93 | 89.8 | - | 12 | 5 | - | [76] | |
MoS2/GO composite | 20–95 | 4800 | - | 6.6 | 3.5 | - | [74] | |
Carbon-based | GO | 20–90 | - | - | 22 in 20–80 | 8 in 80–80 | <3 | [77] |
GO | 10–90 | - | 25.3 | <10 | <10 | <1 | [13] | |
3DAG/PVA/SiO2 | 5–90 | ∼140 | 0.991 in 5–55 2.429 in 55–90 | 24 | 14.4 | 7.8 in 5–85 | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Memon, M.M.; Liu, Q.; Manthar, A.; Wang, T.; Zhang, W. Surface Acoustic Wave Humidity Sensor: A Review. Micromachines 2023, 14, 945. https://doi.org/10.3390/mi14050945
Memon MM, Liu Q, Manthar A, Wang T, Zhang W. Surface Acoustic Wave Humidity Sensor: A Review. Micromachines. 2023; 14(5):945. https://doi.org/10.3390/mi14050945
Chicago/Turabian StyleMemon, Maria Muzamil, Qiong Liu, Ali Manthar, Tao Wang, and Wanli Zhang. 2023. "Surface Acoustic Wave Humidity Sensor: A Review" Micromachines 14, no. 5: 945. https://doi.org/10.3390/mi14050945
APA StyleMemon, M. M., Liu, Q., Manthar, A., Wang, T., & Zhang, W. (2023). Surface Acoustic Wave Humidity Sensor: A Review. Micromachines, 14(5), 945. https://doi.org/10.3390/mi14050945