The Dual Impact of Smartphone App Usage Diversity on Quality of Life: The Moderating Roles of Age and Digital Literacy
Abstract
1. Introduction
1.1. Smartphone App Usage Diversity
1.2. Two-Way Interaction: Moderating Role of Age
1.3. Two-Way Interaction: Moderating Role of Digital Literacy
1.4. Three-Way Interaction: Moderating Role of Age and Digital Literacy
2. Materials and Methods
2.1. Data and Sample
2.2. Variable Measurement
2.3. Procedure and Data Analysis
3. Results
3.1. Descriptive and Correlation Analysis
3.2. Hierarchical Regression Analysis
4. Discussion
4.1. Research Summary
4.2. Theoretical Implications
4.3. Practical Implications
4.4. Limitations and Future Research
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
| 1 | Additional analyses were conducted separately for male and female respondents. The results showed the same pattern as those of the overall sample—Hypotheses 1 and 2 were supported, while Hypothesis 3 remained non-significant in both subsamples—indicating that the main findings are consistent across gender. |
References
- Bae, S. M. (2022). The mediating effect of digital literacy on the relationship between smartphone use motives and life satisfaction for senior citizens in Korea. Iranian Journal of Public Health, 51(2), 336–344. [Google Scholar] [CrossRef]
- Bardach, S. H., Rhodus, E. K., Parsons, K., & Gibson, A. K. (2021). Older adults’ adaptations to the call for social distancing and use of technology: Insights from socioemotional selectivity theory and lived experiences. Journal of Applied Gerontology, 40(8), 814–817. [Google Scholar] [CrossRef] [PubMed]
- Baxter, K. A., Sachdeva, N., & Baker, S. (2025). The application of cognitive load theory to the design of health and behavior change programs: Principles and recommendations. Health Education & Behavior, 52(4), 469–477. [Google Scholar] [CrossRef]
- Busch, P. A., Hausvik, G. I., Ropstad, O. K., & Pettersen, D. (2021). Smartphone usage among older adults. Computers in Human Behavior, 121, 106783. [Google Scholar] [CrossRef]
- Carstensen, L. L. (1992). Social and emotional patterns in adulthood: Support for socioemotional selectivity theory. Psychology and Aging, 7(3), 331–338. [Google Scholar] [CrossRef] [PubMed]
- Chen, T., Foong, H. F., Li, J., Sun, Y., Tang, W., Fu, J., Ibrahim, R., & Ahmad, S. A. (2025). The relationship between smartphone use and cognitive function among Chinese community-dwelling older adults: The moderating role of sex. Behaviour & Information Technology, 1–12. [Google Scholar] [CrossRef]
- Choi, D. J., Kim, Y. S., Um, N. R., & Kim, H. S. (2017). The survey on smartphone overdependence. Ministry of Science and ICT & National Information Society Agency. [Google Scholar]
- Christensen, M. A., Bettencourt, L., Kaye, L., Moturu, S. T., Nguyen, K. T., Olgin, J. E., Pletcher, M. J., & Marcus, G. M. (2016). Direct measurements of smartphone screen-time: Relationships with demographics and sleep. PLoS ONE, 11(11), e0165331. [Google Scholar] [CrossRef]
- Drach-Zahavy, A. (2011). Interorganizational teams as boundary spanners: The role of team diversity, boundedness, and extrateam links. European Journal of Work and Organizational Psychology, 20(1), 89–118. [Google Scholar] [CrossRef]
- Eshet, Y. (2004). Digital literacy: A conceptual framework for survival skills in the digital era. Journal of Educational Multimedia and Hypermedia, 13(1), 93–106. [Google Scholar]
- Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., & Estrin, D. (2010, June 15–18). Diversity in smartphone usage. 8th International Conference on Mobile Systems, Applications, and Services (pp. 179–194), San Francisco, CA, USA. [Google Scholar]
- Griffioen, N., Scholten, H., Lichtwarck-Aschoff, A., Van Rooij, M., & Granic, I. (2021). Everyone does it—Differently: A window into emerging adults’ smartphone use. Humanities and Social Sciences Communications, 8(1), 1–11. [Google Scholar] [CrossRef]
- Hartanto, A., Lee, K. Y., Chua, Y. J., Quek, F. Y., & Majeed, N. M. (2023). Smartphone use and daily cognitive failures: A critical examination using a daily diary approach with objective smartphone measures. British Journal of Psychology, 114(1), 70–85. [Google Scholar] [CrossRef]
- Hiniker, A., Patel, S. N., Kohno, T., & Kientz, J. A. (2016, September 12–16). Why would you do that? Predicting the uses and gratifications behind smartphone-usage behaviors. 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 634–645), Heidelberg, Germany. [Google Scholar]
- Huang, Q., Mo, Q., He, H., Bai, X., Zhang, J., Ma, Z., & Chen, G. (2025). Reliability and validity of the short quality of life scale among bank employees in Guangxi, China. Frontiers in Psychology, 16, 1497827. [Google Scholar] [CrossRef]
- Joo, J., & Sang, Y. (2013). Exploring Koreans’ smartphone usage: An integrated model of the technology acceptance model and uses and gratifications theory. Computers in Human Behavior, 29(6), 2512–2518. [Google Scholar] [CrossRef]
- Joshi, P., Kononova, A., & Cotten, S. (2020). Understanding older adults’ preferences for and motivations to use traditional and new ICT in light of socioemotional selectivity and selection, optimization, and compensation theories. International Journal of Communication, 14, 20. [Google Scholar]
- Kim, T. Y., David, E. M., & Liu, Z. (2021). Perceived cognitive diversity and creativity: A multilevel study of motivational mechanisms and boundary conditions. The Journal of Creative Behavior, 55(1), 168–182. [Google Scholar] [CrossRef]
- Kuss, D. J., & Griffiths, M. D. (2017). Social networking sites and addiction: Ten lessons learned. International Journal of Environmental Research and Public Health, 14(3), 311. [Google Scholar] [CrossRef] [PubMed]
- Lee, S. H. (2014). Digital literacy education for the development of digital literacy. International Journal of Digital Literacy and Digital Competence, 5(3), 29–43. [Google Scholar] [CrossRef]
- Li, T., Fan, Y., Li, Y., Tarkoma, S., & Hui, P. (2021). Understanding the long-term evolution of mobile app usage. IEEE Transactions on Mobile Computing, 22(2), 1213–1230. [Google Scholar] [CrossRef]
- Martin, A., & Grudziecki, J. (2006). DigEuLit: Concepts and tools for digital literacy development. Innovation in Teaching and Learning in Information and Computer Sciences, 5(4), 249–267. [Google Scholar] [CrossRef]
- Montag, C., Błaszkiewicz, K., Sariyska, R., Lachmann, B., Andone, I., Trendafilov, B., Eibes, M., & Markowetz, A. (2015). Smartphone usage in the 21st century: Who is active on WhatsApp? BMC Research Notes, 8(1), 331. [Google Scholar] [CrossRef]
- Moon, J. W., An, Y., & Norman, W. (2022). Exploring the application of the uses and gratifications theory as a conceptual model for identifying the motivations for smartphone use by e-tourists. Tourism Critiques: Practice and Theory, 3(2), 102–119. [Google Scholar] [CrossRef]
- Nason, K. (2023). Influence of media multitasking, cognitive load, and smartphone addiction on divided attention performance [Master’s thesis, University of New Brunswick]. UNB Scholar. Available online: https://unbscholar.lib.unb.ca/bitstreams/ac5704d1-e1c4-4c1a-8b0f-55c5b6753fb3/download (accessed on 20 October 2025).
- Ng, W. (2012). Can we teach digital natives digital literacy? Computers & Education, 59(3), 1065–1078. [Google Scholar] [CrossRef]
- Oh, S. S., Kim, K. A., Kim, M., Oh, J., Chu, S. H., & Choi, J. (2021). Measurement of digital literacy among older adults: Systematic review. Journal of Medical Internet Research, 23(2), e26145. [Google Scholar] [CrossRef]
- Park, C. S., & Kaye, B. K. (2017). Twitter and encountering diversity: The moderating role of network diversity and age in the relationship between Twitter use and crosscutting exposure. Social Media + Society, 3(3), 2056305117717247. [Google Scholar] [CrossRef]
- Park, J. H., & Park, M. (2021). Smartphone use patterns and problematic smartphone use among preschool children. PLoS ONE, 16, e0244276. [Google Scholar] [CrossRef] [PubMed]
- Prensky, M. (2001). Digital natives, digital immigrants part 2: Do they really think differently? On the Horizon, 9(6), 1–6. [Google Scholar] [CrossRef]
- Raacke, J., & Bonds-Raacke, J. (2008). MySpace and Facebook: Applying the uses and gratifications theory to exploring friend-networking sites. Cyberpsychology & Behavior, 11(2), 169–174. [Google Scholar]
- Randjelovic, P., Stojiljkovic, N., Radulovic, N., Stojanovic, N., & Ilic, I. (2021). Problematic smartphone use, screen time and chronotype correlations in university students. European Addiction Research, 27(1), 67–74. [Google Scholar] [CrossRef]
- Ruggiero, T. E. (2000). Uses and gratifications theory in the 21st century. Mass Communication & Society, 3(1), 3–37. [Google Scholar]
- Shopova, T. (2014). Digital literacy of students and its improvement at the university. Journal on Efficiency and Responsibility in Education and Science, 7(2), 26–32. [Google Scholar] [CrossRef]
- Song, J., Kim, J., Jones, D. R., Baker, J., & Chin, W. W. (2014). Application discoverability and user satisfaction in mobile application stores: An environmental psychology perspective. Decision Support Systems, 59, 37–51. [Google Scholar] [CrossRef]
- Stevic, A., Schmuck, D., Matthes, J., & Karsay, K. (2021). ‘Age Matters’: A panel study investigating the influence of communicative and passive smartphone use on well-being. Behaviour & Information Technology, 40(2), 176–190. [Google Scholar]
- Sun, L., Xiong, J., & Zhang, C. (2025). The association between network literacy and subjective well-being among middle-aged and older adults. Frontiers in Psychology, 16, 1590622. [Google Scholar] [CrossRef] [PubMed]
- Surbakti, R., Umboh, S. E., Pong, M., & Dara, S. (2024). Cognitive load theory: Implications for instructional design in digital classrooms. International Journal of Educational Narratives, 2(6), 483–493. [Google Scholar] [CrossRef]
- Sweller, J. (2011). Cognitive load theory. Psychology of Learning and Motivation, 55, 37–76. [Google Scholar]
- Tarafdar, M., Tu, Q., Ragu-Nathan, T. S., & Ragu-Nathan, B. S. (2011). Crossing to the dark side: Examining creators, outcomes, and inhibitors of technostress. Communications of the ACM, 54(9), 113–120. [Google Scholar] [CrossRef]
- Taskin, B., & Ok, C. (2022). Impact of digital literacy and problematic smartphone use on life satisfaction: Comparing pre-and post-COVID-19 pandemic. European Journal of Investigation in Health, Psychology and Education, 12(9), 1311–1322. [Google Scholar] [CrossRef]
- Theophilou, E., Lobo-Quintero, R., Hernández-Leo, D., Sánchez-Reina, R., & Ognibene, D. (2024). Embedding educational narrative scripts in a social media environment. IEEE Transactions on Learning Technologies, 17, 1780–1793. [Google Scholar] [CrossRef]
- Tinmaz, H., Fanea-Ivanovici, M., & Baber, H. (2023). A snapshot of digital literacy. Library Hi Tech News, 40(1), 20–23. [Google Scholar] [CrossRef]
- Tinmaz, H., Lee, Y. T., Fanea-Ivanovici, M., & Baber, H. (2022). A systematic review on digital literacy. Smart Learning Environments, 9(1), 21. [Google Scholar] [CrossRef]
- Twenge, J. M. (2019). More time on technology, less happiness? Associations between digital-media use and psychological well-being. Current Directions in Psychological Science, 28(4), 372–379. [Google Scholar] [CrossRef]
- Vezzoli, M., Zogmaister, C., & Coen, S. (2023). Love, desire, and problematic behaviors: Exploring young adults’ smartphone use from a uses and gratifications perspective. Psychology of Popular Media, 12(1), 50–57. [Google Scholar] [CrossRef]
- Whiting, A., & Williams, D. (2013). Why people use social media: A uses and gratifications approach. Qualitative Market Research: An International Journal, 16(4), 362–369. [Google Scholar] [CrossRef]




| Smartphone App Categories and Relative Usage Ratio | Case Examples (Selective) | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | |
| Communication | 20 | 20 | 25 | 30 | 46 | 60 | 20 | 50 | 75 |
| Bargaining | 20 | 15 | 0 | 20 | 9 | 10 | 5 | 0 | 10 |
| Leisure | 20 | 30 | 25 | 40 | 27 | 10 | 65 | 0 | 5 |
| Utility and lifestyle | 20 | 20 | 25 | 5 | 0 | 10 | 5 | 0 | 5 |
| Information and education | 20 | 15 | 25 | 5 | 18 | 10 | 5 | 50 | 5 |
| SAUD index | 0.800 | 0.785 | 0.750 | 0.705 | 0.675 | 0.600 | 0.530 | 0.500 | 0.420 |
| Variables | Items | Factor 1 | Factor 2 | Factor 3 | Reliability |
|---|---|---|---|---|---|
| Quality of life | Item_01 | −0.023 | 0.242 | 0.612 | 0.712 |
| Item_02 | −0.021 | 0.229 | 0.656 | ||
| Item_03 | −0.019 | 0.114 | 0.717 | ||
| Item_04 | −0.034 | 0.171 | 0.792 | ||
| Problematic smartphone use | Item_01 | 0.710 | 0.129 | −0.095 | 0.881 |
| Item_02 | 0.683 | 0.137 | −0.152 | ||
| Item_03 | 0.670 | 0.172 | −0.168 | ||
| Item_04 | 0.687 | 0.159 | −0.106 | ||
| Item_05 | 0.696 | 0.128 | −0.032 | ||
| Item_06 | 0.688 | 0.124 | −0.006 | ||
| Item_07 | 0.681 | 0.038 | 0.059 | ||
| Item_08 | 0.686 | −0.011 | 0.112 | ||
| Item_09 | 0.693 | −0.023 | 0.127 | ||
| Item_10 | 0.720 | −0.056 | 0.067 | ||
| Digital literacy | Item_01 | 0.056 | 0.707 | 0.168 | 0.838 |
| Item_02 | 0.038 | 0.720 | 0.145 | ||
| Item_03 | 0.081 | 0.754 | 0.151 | ||
| Item_04 | 0.138 | 0.704 | 0.206 | ||
| Item_05 | 0.098 | 0.754 | 0.128 | ||
| Item_06 | 0.146 | 0.688 | 0.097 | ||
| Eigenvalue | 4.845 | 3.405 | 2.194 | ||
| % of Variance | 24.226 | 17.024 | 10.970 | ||
| % Cumulative | 24.226 | 41.249 | 52.220 | ||
| Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|---|
| 1. Quality of life | (0.712) | |||||||||
| 2. SAUD | 0.078 ** | 1.000 | ||||||||
| 3. Digital literacy | 0.404 ** | 0.271 ** | (0.838) | |||||||
| 4. Age | −0.113 ** | −0.186 ** | −0.432 ** | 1.000 | ||||||
| 5. Gender | 0.020 * | 0.010 | 0.068 ** | 0.024 ** | 1.000 | |||||
| 6. Education | 0.168 ** | 0.207 ** | 0.438 ** | −0.618 ** | 0.106 ** | 1.000 | ||||
| 7. Family size | 0.064 ** | 0.097 ** | 0.181 ** | −0.300 ** | 0.014 | 0.252 ** | 1.000 | |||
| 8. Income | 0.118 ** | 0.130 ** | 0.245 ** | −0.215 ** | 0.026 ** | 0.265 ** | 0.533 ** | 1.000 | ||
| 9. PSU | −0.028 ** | 0.191 ** | 0.232 ** | −0.247 ** | 0.030 ** | 0.199 ** | −0.077 ** | 0.101 ** | (0.881) | |
| 10. Digital detox | 0.123 ** | 0.123 ** | 0.227 ** | −0.106 ** | −0.011 | 0.105 ** | 0.049 ** | 0.111 ** | 0.148 ** | 1.000 |
| Mean | 3.008 | 0.732 | 2.738 | 46.003 | 0.484 | 14.268 | 3.019 | 3.246 | 1.905 | 0.524 |
| S.D. | 0.481 | 0.077 | 0.637 | 13.713 | 0.499 | 2.281 | 1.077 | 1.058 | 0.509 | 0.499 |
| Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| b | S.E. | b | S.E. | b | S.E. | b | S.E. | b | S.E. | |
| Constant | 2.110 ** | 0.052 | 2.171 ** | 0.058 | 2.055 ** | 0.060 | 1.950 ** | 0.061 | 1.955 ** | 0.064 |
| Regional dummies | ||||||||||
| Metropolitan (ref.) | ||||||||||
| Mid-sized/small city | −0.011 | 0.006 | −0.010 | 0.006 | −0.010 | 0.006 | −0.011 | 0.006 | −0.007 | 0.006 |
| Rural areas | 0.030 ** | 0.008 | 0.030 ** | 0.008 | 0.031 ** | 0.008 | 0.030 ** | 0.008 | 0.035 ** | 0.008 |
| Housing dummies | ||||||||||
| Detached house (ref.) | ||||||||||
| Apartments | 0.049 ** | 0.007 | 0.048 ** | 0.007 | 0.049 ** | 0.007 | 0.050 ** | 0.007 | 0.050 ** | 0.007 |
| Multi-family dwellings | 0.034 ** | 0.009 | 0.033 ** | 0.009 | 0.034 ** | 0.009 | 0.035 ** | 0.009 | 0.035 ** | 0.009 |
| Others | −0.0005 | 0.021 | −0.0007 | 0.021 | −0.0003 | 0.021 | −0.002 | 0.021 | −0.002 | 0.021 |
| Job dummies | ||||||||||
| Managers (ref.) | ||||||||||
| Professionals | −0.028 | 0.034 | −0.028 | 0.034 | −0.030 | 0.034 | −0.026 | 0.034 | −0.027 | 0.034 |
| Clerical workers | −0.038 | 0.030 | −0.039 | 0.030 | −0.040 | 0.030 | −0.039 | 0.030 | −0.042 | 0.030 |
| Service | −0.076 | 0.031 | −0.076 | 0.031 | −0.074 | 0.031 | −0.072 | 0.031 | −0.070 | 0.031 |
| Sales | −0.086 * | 0.031 | −0.086 * | 0.031 | −0.085 * | 0.031 | −0.080 * | 0.031 | −0.079 | 0.031 |
| Agricultural | −0.037 | 0.038 | −0.039 | 0.038 | −0.040 | 0.038 | −0.034 | 0.038 | −0.039 | 0.038 |
| Trade | −0.028 | 0.032 | −0.028 | 0.032 | −0.026 | 0.032 | −0.021 | 0.032 | −0.021 | 0.032 |
| Operate and Assemble | −0.096 * | 0.035 | −0.096 * | 0.035 | −0.093 * | 0.035 | −0.089 * | 0.035 | −0.090 * | 0.035 |
| Unskilled | −0.149 ** | 0.034 | −0.148 ** | 0.034 | −0.148 ** | 0.034 | −0.143 ** | 0.034 | −0.151 ** | 0.034 |
| Military | −0.191 | 0.433 | −0.190 | 0.433 | −0.189 | 0.433 | −0.186 | 0.432 | −0.187 | 0.432 |
| Homemakers | −0.072 | 0.032 | −0.073 | 0.032 | −0.073 | 0.032 | −0.072 | 0.032 | −0.073 | 0.032 |
| Students | −0.014 | 0.034 | −0.016 | 0.034 | −0.017 | 0.034 | −0.015 | 0.034 | −0.028 | 0.034 |
| Unemployed | −0.106 * | 0.037 | −0.109 * | 0.037 | −0.114 * | 0.037 | −0.118 * | 0.037 | −0.127 ** | 0.037 |
| Others | −0.117 | 0.109 | −0.118 | 0.109 | −0.124 | 0.109 | −0.114 | 0.109 | −0.113 | 0.108 |
| Age | 0.003 ** | 0.0003 | 0.003 ** | 0.0003 | 0.003 ** | 0.0003 | 0.003 ** | 0.0003 | 0.003 ** | 0.0003 |
| Gender | −0.021 * | 0.006 | −0.022 ** | 0.006 | −0.021 * | 0.006 | −0.022 ** | 0.006 | −0.022 ** | 0.006 |
| Education | 0.005 * | 0.001 | 0.005 * | 0.001 | 0.006 ** | 0.001 | 0.006 ** | 0.001 | 0.007 ** | 0.001 |
| Family size | −0.004 | 0.003 | −0.004 | 0.003 | −0.003 | 0.003 | −0.004 | 0.003 | −0.003 | 0.003 |
| Income | 0.012 ** | 0.003 | 0.012 ** | 0.003 | 0.012 ** | 0.003 | 0.012 ** | 0.003 | 0.013 ** | 0.003 |
| PSU | −0.120 ** | 0.006 | −0.118 ** | 0.006 | −0.118 ** | 0.006 | −0.116 ** | 0.006 | −0.116 ** | 0.006 |
| Digital detox | 0.041 ** | 0.006 | 0.042 ** | 0.006 | 0.041 ** | 0.006 | 0.036 ** | 0.006 | 0.037 ** | 0.006 |
| Digital literacy | 0.325 ** | 0.005 | 0.327 ** | 0.005 | 0.330 ** | 0.005 | 0.331 ** | 0.005 | 0.333 ** | 0.005 |
| SAUD | −0.101 | 0.041 | 0.022 | 0.045 | 0.145 * | 0.046 | 0.099 | 0.051 | ||
| SAUD × Age | −0.017 ** | 0.002 | 0.001 | 0.003 | ||||||
| SAUD × Digital literacy | 0.509 ** | 0.047 | 0.594 ** | 0.068 | ||||||
| Age × Digital literacy | −0.001 ** | 0.0003 | ||||||||
| SAUD × Age × Digital literacy | −0.011 * | 0.003 | ||||||||
| F-value | 192.47 ** | 185.61 ** | 180.62 ** | 184.08 ** | 167.58 ** | |||||
| R-squared | 0.1929 | 0.1931 | 0.1945 | 0.1975 | 0.1988 | |||||
| ΔR-squared | 0.1929 | 0.0002 | 0.0014 | 0.0030 | 0.0013 | |||||
| Adj. R-squared | 0.1919 | 0.1921 | 0.1935 | 0.1965 | 0.1976 | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Published by MDPI on behalf of the University Association of Education and Psychology. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ok, C. The Dual Impact of Smartphone App Usage Diversity on Quality of Life: The Moderating Roles of Age and Digital Literacy. Eur. J. Investig. Health Psychol. Educ. 2025, 15, 221. https://doi.org/10.3390/ejihpe15110221
Ok C. The Dual Impact of Smartphone App Usage Diversity on Quality of Life: The Moderating Roles of Age and Digital Literacy. European Journal of Investigation in Health, Psychology and Education. 2025; 15(11):221. https://doi.org/10.3390/ejihpe15110221
Chicago/Turabian StyleOk, Chiho. 2025. "The Dual Impact of Smartphone App Usage Diversity on Quality of Life: The Moderating Roles of Age and Digital Literacy" European Journal of Investigation in Health, Psychology and Education 15, no. 11: 221. https://doi.org/10.3390/ejihpe15110221
APA StyleOk, C. (2025). The Dual Impact of Smartphone App Usage Diversity on Quality of Life: The Moderating Roles of Age and Digital Literacy. European Journal of Investigation in Health, Psychology and Education, 15(11), 221. https://doi.org/10.3390/ejihpe15110221

