Effects of Long COVID on Psycho-Physical Conditions in the Italian Population: A Statistical and Large Language Model Combined Description
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Data Collection
2.4. The Questionnaire
2.5. Ethical Considerations
2.6. Statistical Analysis
2.7. Generative Artificial Intelligence and Large Language Models for Open-Ended Question Processing
- Splitting the whole set of items into a small and arbitrary number of clusters in order to capture patterns in the items themselves, with the corresponding numbers of each cluster.
- For each specific pattern, summarizing the items in the cluster in order to obtain a more detailed description of the mood expressed in the item cluster.
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). WHO Coronavirus (COVID-19) Dashboard. 2022. Available online: https://covid19.who.int/ (accessed on 11 April 2023).
- Vitale, E.; Galatola, V.; Mea, R. Observational study on the potential psychological factors that affected Italian nurses involved in the COVID-19 health emergency. Acta Biomed. 2021, 92, e2021007. [Google Scholar] [CrossRef] [PubMed]
- Bonsaksen, T.; Leung, J.; Price, D.; Ruffolo, M.; Lamph, G.; Kabelenga, I.; Thygesen, H.; Geirdal, A.Ø. Self-Reported Long-Covid in the General Population: Sociodemographic and Health Correlates in a Cross-National Sample. Life 2022, 12, 901. [Google Scholar] [CrossRef] [PubMed]
- Feikin, D.R.; Higdon, M.M.; Abu-Raddad, L.J.; Andrews, N.; Araos, R.; Goldberg, Y.; Groome, M.J.; Huppert, A.; O’Brien, K.L.; Smith, P.G.; et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: Results of a systematic review and meta-regression. Lancet 2022, 399, 924–944. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.; Zechmeister-Koss, I.; Erdös, J. Possible long COVID healthcare pathways: A scoping review. BMC Health Serv. Res. 2022, 22, 1076. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sykes, D.L.; Holdsworth, L.; Jawad, N.; Gunasekera, P.; Morice, A.H.; Crooks, M.G. Post-COVID-19 Symptom Burden: What is Long-Covid and How Should We Manage It? Lung 2021, 199, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Aiyegbusi, O.L.; Hughes, S.E.; Turner, G.; Rivera, S.C.; McMullan, C.; Chandan, J.S.; Haroon, S.; Price, G.; Davies, E.H.; Nirantharakumar, K.; et al. Symptoms, complications and management of Long-Covid: A review. J. R. Soc. Med. 2021, 114, 428–442. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, P. NICE guideline on Long-Covid. Lancet Respir. Med. 2021, 9, 129. [Google Scholar] [CrossRef] [PubMed]
- Coloma-Carmona, A.; Carballo, J.L. Predicting PTSS in general population during COVID-19 pandemic: The mediating role of health anxiety. J. Affect. Disord. 2021, 294, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Nandwani, P.; Verma, R. A review on sentiment analysis and emotion detection from text. Soc. Netw. Anal. Min. 2021, 11, 81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wahlster, W. Understanding computational dialogue understanding. Phil. Trans. R. Soc. A 2023, 381, 3812022004920220049. [Google Scholar] [CrossRef]
- Chia, Y.K.; Hong, P.; Bing, L.; Poria, S. Instructeval: Towards Holistic Evaluation of Instruction-Tuned Large Language Models. arXiv 2023, arXiv:2306.04757. [Google Scholar]
- Groff, D.; Sun, A.; Sentongo, A.E.; Ba, D.M.; Parsons, N.; Poudel, G.R.; Lekoubou, A.; Oh, J.S.; Ericson, J.E.; Ssentongo, P.; et al. Short-Term and Long-Term Rates of Postacute Sequelae of SARSCoVInfection: A Systematic Review. JAMA Netw. Open 2021, 4, e2128568. [Google Scholar] [CrossRef] [PubMed]
- Moretti, C.; Collaro, C.; Terzoni, C.; Colucci, G.; Copelli, M.; Sarli, L.; Artioli, G. Dealing with uncertainty. A qualitative study on the illness’ experience in patients with Long-Covid in Italy. Acta Biomed. 2022, 93, e2022349. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.who.int/europe/news-room/fact-sheets/item/post-Covid-19-condition (accessed on 11 April 2023).
- Pakpour, A.H.; Liu, C.-H.; Hou, W.-L.; Chen, Y.-P.; Li, Y.-P.; Kuo, Y.-J.; Lin, C.-Y.; Scarf, D. Comparing fear of COVID-19 and preventive COVID19 infection behaviors between Iranian and Taiwanese older people: Early reaction may be a key. Front. Public Health 2021, 9, 740333. [Google Scholar] [CrossRef] [PubMed]
- Alijanzadeh, M.; Harati, T. The role of social capital in the implementation of social distancing during the COVID-19 pandemic. Asian J. Soc. Health Behav. 2021, 4, 45–46. [Google Scholar] [CrossRef]
- Shirali, G.A.; Rahimi, Z.; Araban, M.; Mohammadi, M.J.; Cheraghian, B. Social-distancing compliance among pedestrians in Ahvaz, South-West Iran during the COVID-19 pandemic. Asian J. Soc. Health Behav. 2021, 4, 131. [Google Scholar]
- Hampshire, A.; Hellyer, P.J.; Soreq, E.; Mehta, M.A.; Ioannidis, K.; Trender, W.; Grant, J.E.; Chamberlain, S.R. Associations between dimensions of behaviour, personality traits, and mental-health during the COVID-19 pandemic in the United Kingdom. Nat. Commun. 2021, 12, 4111, Erratum in Nat. Commun. 2021, 12, 5047. [Google Scholar] [CrossRef]
- Gecaite-Stonciene, J.; Saudargiene, A.; Pranckeviciene, A.; Liaugaudaite, V.; Griskova-Bulanova, I.; Simkute, D.; Naginiene, R.; Dainauskas, L.L.; Ceidaite, G.; Burkauskas, J. Impulsivity Mediates Associations Between Problematic Internet Use, Anxiety, and Depressive Symptoms in Students: A Cross-Sectional COVID-19 Study. Front. Psychiatry 2021, 12, 634464. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, L.; Xue, P.; Yang, X.; Tang, X. Mental Health Response to the COVID-19 Outbreak in China. Am. J. Psychiatry 2020, 177, 574–575. [Google Scholar] [CrossRef]
- Mota, D.C.B.; Silva, Y.V.; Costa, T.A.F.; Aguiar, M.H.C.; Marques, M.E.M.; Monaquezi, R.M. Mental health and internet use by university students: Coping strategies in the context of COVID-19. Ciênc Saúde Coletiva 2021, 26, 2159–2170. [Google Scholar] [CrossRef] [PubMed]
- Burkauskas, J.; Gecaite-Stonciene, J.; Demetrovics, Z.; Griffiths, M.D.; Király, O. Prevalence of problematic Internet use during the coronavirus disease 2019 pandemic. Curr. Opin. Behav. Sci. 2022, 46, 101179. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.H.; Chen, C.Y.; Liu, C.H.; Ahorsu, D.K.; Griffiths, M.D.; Chen, Y.P.; Kuo, Y.J.; Lin, C.Y.; Pakpour, A.H.; Wang, S.M. Internet addiction and psychological distress among Chinese schoolchildren before and during the COVID-19 outbreak: A latent class analysis. J. Behav. Addict. 2021, 10, 731–746. [Google Scholar] [CrossRef]
- Fung, X.C.; Siu, A.M.; Potenza, M.N.; O’Brien, K.S.; Latner, J.D.; Chen, C.-Y.; Chen, I.-H.; Lin, C.-Y. Problematic use of internet-related activities and perceived weight stigma in schoolchildren: A longitudinal study across diferent epidemic periods of COVID-19 in China. Front. Psychiatry 2021, 12, 675839. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Chen, I.-H.; Hou, W.-L.; Potenza, M.N.; O’Brien, K.S.; Lin, C.-Y.; Latner, J.D. The relationship between children’s problematic internet-related behaviors and psychological distress during the onset of the COVID-19 pandemic: A longitudinal study. J. Addict. Med. 2022, 16, e73. [Google Scholar] [CrossRef] [PubMed]
- King, D.L.; Achab, S.; Higuchi, S.; Bowden-Jones, H.; Müller, K.W.; Billieux, J.; Starcevic, V.; Saunders, J.B.; Tam, P.; Delfabbro, P.H. Gaming disorder and the COVID-19 pandemic: Treatment demand and service delivery challenges. J. Behav. Addict. 2022, 11, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Brand, M.; Young, K.S.; Laier, C.; Wölfing, K.; Potenza, M.N. Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: An Interaction of Person-Affect-Cognition-Execution (I-PACE) model. Neurosci. Biobehav. Rev. 2016, 71, 252–266. [Google Scholar] [CrossRef]
- Alimoradi, Z.; Lotfi, A.; Lin, C.Y.; Griffiths, M.D.; Pakpour, A.H. Estimation of Behavioral Addiction Prevalence During COVID-19 Pandemic: A Systematic Review and Meta-analysis. Curr. Addict. Rep. 2022, 9, 486–517. [Google Scholar] [CrossRef] [PubMed]
- Roza, T.H.; Spritzer, D.T.; Lovato, L.M.; Passos, I.C. Multimodal treatment for a Brazilian case of hikikomori. Braz. J. Psychiatry 2020, 42, 455–456. [Google Scholar] [CrossRef] [PubMed]
- Gondim, F.A.A.; Aragão, A.P.; Holanda Filha, J.G.; Messias, E.L.M. Hikikomori in Brazil: 29 years of Voluntary social Withdrawal. Asian J. Psychiatr. 2017, 30, 163–164. [Google Scholar] [CrossRef] [PubMed]
- Prioste, C.D.; de Siqueira, R.C. Fetichismo virtual na vida de um Hikikomori brasileiro: Um estudo de caso. DOXA Rev. Bras. Psicol. Educ. 2019, 21, 4–16. [Google Scholar] [CrossRef]
- Rooksby, M.; Furuhashi, T.; McLeod, H.J. Hikikomori: A hidden mental health need following the COVID-19 pandemic. World Psychiatry 2020, 19, 399–400. [Google Scholar] [CrossRef] [PubMed]
- Honcharova, O.; Kyvliuk, O.; Chugueva, I. The Existence of Personality and Hikikomori State: A Socio-Philosophical Reflection on the Consequences of the COVID-19 Pandemic. Stud. Warm. 2022, 59, 63–86. [Google Scholar] [CrossRef]
- Craparo, G.; La Rosa, V.L.; Commodari, E.; Marino, G.; Vezzoli, M.; Faraci, P.; Vicario, C.M.; Cinà, G.S.; Colombi, M.; Arcoleo, G.; et al. What Is the Role of Psychological Factors in Long-Covid Syndrome? Latent Class Analysis in a Sample of Patients Recovered from COVID-19. Int. J. Environ. Res. Public Health 2023, 20, 494. [Google Scholar] [CrossRef] [PubMed]
- Manfredini, A.; Pisano, F.; Incoccia, C.; Marangolo, P. The Impact of COVID-19 Lockdown Measures and COVID-19 Infection on Cognitive Functions: A Review in Healthy and Neurological Populations. Int. J. Environ. Res. Public Health 2023, 20, 4889. [Google Scholar] [CrossRef] [PubMed]
- Centre for Suicide Prevention. Depression and Suicide Prevention. 2020. Available online: https://www.suicideinfo.ca/resource/depression-suicide-prevention/ (accessed on 15 December 2020).
- O’Rourke, M.C.; Jamil, R.T.; Siddiqui, W. Suicide screening and prevention. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020; Available online: https://www-ncbi-nlm-nih-gov.eresources.mssm.edu/books/NBK531453/ (accessed on 30 November 2020).
Sampling Characteristics | n (%) |
---|---|
Region of Italy | |
North | 216 (19.7) |
Center | 168 (15.3) |
South | 713 (65) |
Gender | |
Female | 621 (56.6) |
Male | 476 (43.4) |
Age | |
Up to 30 years | 510 (46.5) |
31–40 years | 174 (15.9) |
41–50 years | 136 (12.4) |
51–60 years | 124 (11.3) |
Over 60 years | 153 (13.9) |
Marital status | |
Married | 594 (54.1) |
Unmarried | 456 (41.6) |
Divorced/separated | 26 (2.4) |
Widower/widow | 21 (1.9) |
Educational level | |
Lower | 214 (19.5) |
Diploma | 445 (40.6) |
Degree | 272 (24.8) |
Postdegree | 78 (7.1) |
None | 88 (8) |
Occupational level | |
Student | 372 (33.9) |
Housewife | 87 (7.9) |
Worker | 116 (10.6) |
Public employee | 179 (16.3) |
Freelance | 163 (14.9) |
Retired | 110 (10) |
Unemployed | 32 (2.9) |
Other | 38 (3.5) |
Children | |
Yes | 486 (44.3) |
No | 611 (55.7) |
Live with | |
Family of origin | 358 (32.6) |
Own family | 338 (30.8) |
Others | 304 (27.7) |
Alone | 97 (8.8) |
Item | COVID-19 | p-Value | Effect Size | |
---|---|---|---|---|
Yes | No | |||
Were you hospitalized? | 0.348 | 0.288 | ||
Yes | 48 (4.4) | 6 (0.5) | ||
No | 870 (79.3) | 173 (15.8) | ||
Were you on mechanical ventilation during your hospitalization? | 0.409 | 0.255 | ||
Yes | 23 (2.1) | 2 (0.2) | ||
No | 895 (81.6) | 177 (16.1) | ||
Were you subjected to home care assistance? | 689 (62.8) 229 (20.9) | 14 (1.3) 165 (15) | <0.001 *** | 0.000 |
Yes | ||||
No | ||||
Did you interrupt your treatment due to COVID-19? | <0.001 *** | 0.000 | ||
Yes | 155 (14.1) | 6 (0.5) | ||
No | 763 (69.9) | 173 (15.8) | ||
During this time, you suffered from: | ||||
Depression | <0.001 *** | 0.000 | ||
Yes | 520 (47.4) | 22 (2) | ||
No | 398 (36.3) | 157 (14.3) | ||
Anxiety | <0.001 *** | 0.000 | ||
Yes | 660 (60.2) | 14 (1.3) | ||
No | 258 (23.5) | 165 (15) | ||
Headache | <0.001 *** | 0.000 | ||
Yes | 472 (43) | 15 (1.4) | ||
No | 446 (40.7) | 164 (14.9) | ||
Asthma | <0.001 *** | 0.000 | ||
Yes | 334 (30.4) | 8 (0.7) | ||
No | 584 (53.2) | 171 (15.6) | ||
Gastroesophageal reflux | <0.001 *** | 0.000 | ||
Yes | 135 (12.3) | 5 (0.5) | ||
No | 783 (71.4) | 174 (15.9) | ||
Low back pain | <0.001 *** | 0.000 | ||
Yes | 190 (17.3) | 6 (0.5) | ||
No | 728 (66.4) | 173 (15.8) | ||
Hypertension | <0.001 *** | 0.000 | ||
Yes | 143 (13) | 3 (0.3) | ||
No | 775 (70.6) | 176 (16) | ||
Menstrual pain | 0.001 *** | 0.003 | ||
Yes | 72 (6.6) | 3 (0.3) | ||
No | 846 (77.1) | 176 (16) | ||
Eating disorders | 0.034 * | 0.035 | ||
Yes | 41 (3.7) | 2 (0.2) | ||
No | 877 (79.9) | 177 (16.1) | ||
Ageusia | 0.001*** | 0.003 | ||
Yes | 72 (6.6) | 3 (0.3) | ||
No | 846 (77.1) | 176 (16) | ||
Regular rest | <0.001 *** | 0.000 | ||
Yes | 92 (8.4) | 3 (0.3) | ||
No | 826 (75.3) | 176 (16) | ||
Other | 0.024 * | 0.022 | ||
Yes | 45 (4.1) | 2 (0.2) | ||
No | 873 (79.6) | 177 (16.1) | ||
Have you developed an addiction? | 0.003 ** | 0.003 | ||
Yes | 320 (29.2) | 42 (3.8) | ||
No | 598 (54.5) | 137 (12.5) | ||
What addiction? | 0.007 ** | 0.007 | ||
Narcotic substances | 5 (0.5) | 3 (0.3) | ||
Alcohol abuse | 5 (0.5) | 2 (0.2) | ||
Medicines | 6 (0.5) | 1 (0.1) | ||
Gambling | 7 (0.6) | 2 (0.2) | ||
Internet | 224 (20.4) | 24 (2.2) | ||
Affectivity | 73 (6.7) | 8 (0.7) | ||
No addiction | 598 (54.5) | 139 (12.7) |
Item | COVID-19 | p-Value | Effect Size | |
---|---|---|---|---|
Yes | No | |||
Overall, you would say your health is | <0.001 *** | 0.000 | ||
Excellent | 27 (2.5) | 20 (1.8) | ||
Very good | 677 (61.7) | 87 (7.9) | ||
Good | 172 (15.7) | 53 (4.8) | ||
Passable | 36 (3.3) | 19 (1.7) | ||
Poor | 6 (0.5) | 0 (0) | ||
Your health restricts you from carrying out daily activities | <0.001 *** | 0.000 | ||
Yes, it limits me a lot | 128 (11.7) | 6 (0.5) | ||
Yes, it partially limits me | 568 (51.8) | 38 (3.5) | ||
No, it doesn’t limit me at all | 222 (20.2) | 135 (12.3) | ||
Has your physical health or emotional state interfered with your social activities, family, friends? | <0.001 *** | 0.000 | ||
Always | 9 (0.8) | 5 (0.5) | ||
Almost always | 279 (25.4) | 48 (4.4) | ||
Part of the time | 405 (36.9) | 61 (5.6) | ||
Almost never | 187 (17) | 41 (3.7) | ||
Never | 38 (3.5) | 24 (2.2) |
Items | COVID-19 | p-Value | Effect Size | |
---|---|---|---|---|
Yes | No | |||
Relationships with partner | <0.001 ** | 0.000 | ||
In no way | 793 (72.3) | 114 (10.4) | ||
Very little | 34 (3.1) | 30 (2.7) | ||
A bit | 56 (5.1) | 19 (1.7) | ||
Much | 22 (2) | 13 (1.2) | ||
Very much | 13 (1.2) | 3 (0.3) | ||
Relationships with children | 0.009 * | 0.000 | ||
In no way | 870 (79.3) | 160 (14.6) | ||
Very little | 21 (1.9) | 12 (1.1) | ||
A bit | 15 (1.4) | 5 (0.5) | ||
Much | 11 (1) | 1 (0.1) | ||
Very much | 1 (0.1) | 1 (0.1) | ||
Relationships with parents | <0.001 ** | 0.017 | ||
In no way | 770 (70.2) | 107 (9.8) | ||
Very little | 62 (5.7) | 35 (3.2) | ||
A bit | 59 (5.4) | 26 (2.4) | ||
Much | 22 (2) | 7 (0.6) | ||
Very much | 5 (0.5) | 4 (0.4) | ||
Relationships with co-workers | <0.001 ** | 0.000 | ||
In no way | 795 (72.5) | 129 (11.8) | ||
Very little | 60 (5.5) | 22 (2) | ||
A bit | 43 (3.9) | 17 (1.5) | ||
Much | 15 (1.4) | 10 (0.9) | ||
Very much | 5 (0.5) | 1 (0.1) | ||
Relationships with educational institutions | <0.001 ** | 0.000 | ||
In no way | 793 (72.3) | 115 (10.5) | ||
Very little | 33 (3) | 16 (1.5) | ||
A bit | 48 (4.4) | 20 (1.8) | ||
Much | 27 (2.5) | 17 (1.5) | ||
Very much | 17 (1.5) | 11 (1.0) | ||
Concentration at school | <0.001 ** | 0.000 | ||
In no way | 720 (65.6) | 110 (10) | ||
Very little | 59 (5.4) | 17 (1.5) | ||
A bit | 64 (5.8) | 22 (2) | ||
Much | 48 (4.4) | 22 (2) | ||
Very much | 27 (2.5) | 8 (0.7) | ||
Concentration at work environments | 0.011 * | 0.000 | ||
In no way | 682 (62.2) | 112 (10.2) | ||
Very little | 117 (10.7) | 30 (2.7) | ||
A bit | 76 (6.9) | 22 (2) | ||
Much | 31 (2.8) | 13 (1.2) | ||
Very much | 12 (1.1) | 2 (0.2) | ||
Health condition | 0.001 ** | 0.000 | ||
In no way | 110 (10) | 71 (6.5) | ||
Very little | 525 (47.9) | 67 (6.1) | ||
A bit | 222 (20.2) | 25 (2.3) | ||
Much | 55 (5) | 15 (1.4) | ||
Very much | 6 (0.5) | 1 (0.1) | ||
Sleep disorder | 0.001 ** | 0.000 | ||
In no way | 422 (38.5) | 84 (7.7) | ||
Very little | 196 (17.9) | 35 (3.2) | ||
A bit | 238 (21.7) | 36 (3.3) | ||
Much | 48 (4.4) | 12 (1.1) | ||
Very much | 14 (1.3) | 12 (1.1) | ||
The feeling of abandonment | <0.001 ** | 0.000 | ||
In no way | 212 (19.3) | 69 (6.3) | ||
Very little | 251 (22.9) | 44 (4) | ||
A bit | 334 (30.4) | 42 (3.8) | ||
Much | 101 (9.2) | 14 (1.3) | ||
Very much | 20 (1.8) | 10 (0.9) | ||
Shaking hands in crowded places | <0.001 ** | 0.003 | ||
In no way | 115 (10.5) | 42 (3.8) | ||
Very little | 241 (22) | 37 (3.4) | ||
A bit | 374 (34.1) | 53 (4.8) | ||
Much | 144 (13.1) | 23 (2.1) | ||
Very much | 44 (4) | 24 (2.2) | ||
Interest in participating in social and cultural events | 0.001 ** | 0.035 | ||
In no way | 130 (11.9) | 42 (3.8) | ||
Very little | 310 (28.3) | 38 (3.5) | ||
A bit | 257 (23.4) | 48 (4.4) | ||
Much | 162 (14.8) | 32 (2.9) | ||
Very much | 59 (5.4) | 19 (1.7) | ||
Economic condition | 0.0998 | 0.003 | ||
In no way | 238 (21.7) | 62 (5.7) | ||
Very little | 337 (30.7) | 53 (4.8) | ||
A bit | 230 (21) | 39 (3.6) | ||
Much | 93 (8.5) | 19 (1.7) | ||
Very much | 20 (1.8) | 6 (0.5) | ||
The feeling of loneliness | <0.001 ** | 0.000 | ||
In no way | 102 (9.3) | 47 (4.3) | ||
Very little | 255 (23.2) | 41 (3.7) | ||
A bit | 269 (24.5) | 36 (3.3) | ||
Much | 194 (17.7) | 29 (2.6) | ||
Very much | 98 (8.9) | 26 (2.4) |
Hikikomori Scale/COVID-19 | µ ± s.d. | C.I. 95% | F | p-Value | |
---|---|---|---|---|---|
Minimum | Maximum | ||||
Socialization | |||||
COVID-19 yes | 19.57 ± 4.17 | 19.30 | 19.84 | 3.50 | 0.062 |
COVID-19 no | 20.26 ± 5.78 | 19.40 | 21.11 | ||
Isolation | |||||
COVID-19 yes | 13.94 ± 4.21 | 13.67 | 14.21 | 22.59 | <0.001 *** |
COVID-19 no | 12.18 ± 5.84 | 11.32 | 13.05 | ||
Emotional support | |||||
COVID-19 yes | 11.35 ± 2.51 | 11.19 | 11.51 | 13.51 | <0.001 *** |
COVID-19 no | 12.12 ± 2.87 | 11.70 | 12.55 | ||
Total score | |||||
COVID-19 yes | 44.86 ± 8.39 | 44.32 | 45.41 | 0.162 | 0.687 |
COVID-19 no | 44.56 ± 11.97 | 42.80 | 42.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupo, R.; Vitale, E.; Panzanaro, L.; Lezzi, A.; Lezzi, P.; Botti, S.; Rubbi, I.; Carvello, M.; Calabrò, A.; Puglia, A.; et al. Effects of Long COVID on Psycho-Physical Conditions in the Italian Population: A Statistical and Large Language Model Combined Description. Eur. J. Investig. Health Psychol. Educ. 2024, 14, 1153-1170. https://doi.org/10.3390/ejihpe14050076
Lupo R, Vitale E, Panzanaro L, Lezzi A, Lezzi P, Botti S, Rubbi I, Carvello M, Calabrò A, Puglia A, et al. Effects of Long COVID on Psycho-Physical Conditions in the Italian Population: A Statistical and Large Language Model Combined Description. European Journal of Investigation in Health, Psychology and Education. 2024; 14(5):1153-1170. https://doi.org/10.3390/ejihpe14050076
Chicago/Turabian StyleLupo, Roberto, Elsa Vitale, Ludovica Panzanaro, Alessia Lezzi, Pierluigi Lezzi, Stefano Botti, Ivan Rubbi, Maicol Carvello, Antonino Calabrò, Alessandra Puglia, and et al. 2024. "Effects of Long COVID on Psycho-Physical Conditions in the Italian Population: A Statistical and Large Language Model Combined Description" European Journal of Investigation in Health, Psychology and Education 14, no. 5: 1153-1170. https://doi.org/10.3390/ejihpe14050076
APA StyleLupo, R., Vitale, E., Panzanaro, L., Lezzi, A., Lezzi, P., Botti, S., Rubbi, I., Carvello, M., Calabrò, A., Puglia, A., Conte, L., & De Nunzio, G. (2024). Effects of Long COVID on Psycho-Physical Conditions in the Italian Population: A Statistical and Large Language Model Combined Description. European Journal of Investigation in Health, Psychology and Education, 14(5), 1153-1170. https://doi.org/10.3390/ejihpe14050076