Polycystic Ovary Syndrome Triggers Atrial Conduction Disorders: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Eligibility Criteria
2.3. Outcomes of Interest and Definitions
- the average time interval from onset of P-wave on surface ECG to the beginning of the late diastolic wave, (atrial electromechanical coupling, PA), which was obtained from:
- the lateral mitral valve annulus (PA lateral),
- the septal mitral valve annulus (PA septal),
- and the right ventricular tricuspid annulus (PA tricuspid),
- the difference between PA lateral and PA tricuspid (PA lateral—PA tricuspid), defined as inter-AED, and the difference between PA septum and PA tricuspid (PA septum—PA tricuspid), defined as intra-AED [16].
2.4. Data Extraction and Quality Assessment
2.5. Data Synthesis and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scarpitta, A.M.; Sinagra, D. Polycystic ovary syndrome: An endocrine and metabolic disease. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2000, 14, 392–395. [Google Scholar] [CrossRef]
- Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [CrossRef] [PubMed]
- Azziz, R.; Carmina, E.; Dewailly, D.; Diamanti-Kandarakis, E.; Escobar-Morreale, H.F.; Futterweit, W.; Janssen, O.E.; Legro, R.S.; Norman, R.J.; Taylor, A.E.; et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: The complete task force report. Fertil. Steril. 2009, 91, 456–488. [Google Scholar] [CrossRef] [PubMed]
- Paradisi, G.; Steinberg, H.O.; Hempfling, A.; Cronin, J.; Hook, G.; Shepard, M.K.; Baron, A.D. Polycystic ovary syndrome is associated with endothelial dysfunction. Circulation 2001, 103, 1410–1415. [Google Scholar] [CrossRef]
- Yarali, H.; Yildirir, A.; Aybar, F.; Kabakçı, G.; Bükülmez, O.; Akgül, E.; Oto, A. Diastolic dysfunction and increased serum homocysteine concentrations may contribute to increased cardiovascular risk in patients with polycystic ovary syndrome. Fertil. Steril. 2001, 76, 511–516. [Google Scholar] [CrossRef]
- Kelly, C.C.; Lyall, H.; Petrie, J.R.; Gould, G.W.; Connell, J.M.; Sattar, N. Low grade chronic inflammation in women with polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 2001, 86, 2453–2455. [Google Scholar] [CrossRef]
- Moghetti, P. Insulin Resistance and Polycystic Ovary Syndrome. Curr. Pharm. Des. 2016, 22, 5526–5534. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 2018, 14, 270–284. [Google Scholar] [CrossRef]
- Azziz, R. Polycystic Ovary Syndrome. Obstet. Gynecol. 2018, 132, 321–336. [Google Scholar] [CrossRef]
- Scicchitano, P.; Dentamaro, I.; Carbonara, R.; Bulzis, G.; Dachille, A.; Caputo, P.; Riccardi, R.; Locorotondo, M.; Mandurino, C.; Ciccone, M.M. Cardiovascular Risk in Women With PCOS. Int. J. Endocrinol. Metab. 2012, 10, 611–618. [Google Scholar] [CrossRef] [Green Version]
- Giallauria, F.; Orio, F.; Palomba, S.; Lombardi, G.; Colao, A.; Vigorito, C. Cardiovascular risk in women with polycystic ovary syndrome. J. Cardiovasc. Med. 2008, 9, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Orio, F.; Giallauria, F.; Palomba, S.; Cascella, T.; Manguso, F.; Vuolo, L.; Russo, T.; Tolino, A.; Lombardi, G.; Colao, A.; et al. Cardiopulmonary Impairment in Young Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2006, 91, 2967–2971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, J.C.; Feigenbaum, S.L.; Yang, J.; Pressman, A.R.; Selby, J.V.; Go, A.S. Epidemiology and Adverse Cardiovascular Risk Profile of Diagnosed Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2006, 91, 1357–1363. [Google Scholar] [CrossRef]
- Daubert, J.-C.; Pavin, D.; Jauvert, G.; Mabo, P. Intra- and Interatrial Conduction Delay: Implications for Cardiac Pacing. Pacing Clin. Electrophysiol. 2004, 27, 507–525. [Google Scholar] [CrossRef]
- Korantzopoulos, P.; Kolettis, T.M.; Galaris, D.; Goudevenos, J.A. The role of oxidative stress in the pathogenesis and perpetuation of atrial fibrillation. Int. J. Cardiol. 2007, 115, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Pekdemir, H.; Cansel, M.; Yağmur, J.; Acıkgoz, N.; Ermis, N.; Kurtoglu, E.; Tasolar, H.; Atas, H.; Ozdemir, R. Assessment of atrial conduction time by tissue Doppler echocardiography and P-wave dispersion in patients with mitral annulus calcification. J. Electrocardiol. 2010, 43, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Dilaveris, P.E.; Gialafos, E.J.; Sideris, S.K.; Theopistou, A.M.; Andrikopoulos, G.K.; Kyriakidis, M.; Gialafos, J.E.; Toutouzas, P.K. Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation. Am. Hear. J. 1998, 135, 733–738. [Google Scholar] [CrossRef]
- Yagmur, J.; Cansel, M.; Acikgoz, N.; Ermis, N.; Yagmur, M.; Atas, H.; Tasolar, H.; Karakus, Y.; Pekdemir, H.; Ozdemir, R. Assessment of Atrial Electromechanical Delay by Tissue Doppler Echocardiography in Obese Subjects. Obesity 2011, 19, 779–783. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Centurión, O.A. Clinical implications of the P wave duration and dispersion: Relationship between atrial conduction defects and abnormally prolonged and fractionated atrial endocardial electrograms. Int. J. Cardiol. 2009, 134, 6–8. [Google Scholar] [CrossRef]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Chu, H. Quantifying publication bias in meta-analysis. Biometrics 2018, 74, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Bayir, P.T.; Guray, U.; Duyuler, S.; Demirkan, B.; Kayaalp, O.; Kanat, S.; Guray, Y. Assessment of atrial electromechanical interval and P wave dispersion in patients with polycystic ovary syndrome. Anatol. J. Cardiol. 2015, 16, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Gazi, E.; Gencer, M.; Hanci, V.; Temiz, A.; Altun, B.; Barutcu, A.; Gungor, A.N.; Hacivelioglu, S.; Uysal, A.; Colkesen, Y. Atrial conduction time, and left atrial mechanical and electromechanical functions in patients with polycystic ovary syndrome: Interatrial conduction delay. Cardiovasc. J. Afr. 2015, 26, 217–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taşolar, H.; Mete, T.; Ballı, M.; Altun, B.; Cetin, M.; Yüce, T.; Taşolar, S.; Otlu, Ö.; Bayramoğlu, A.; Pekdemir, H. Assessment of atrial electromechanical delay in patients with polycystic ovary syndrome in both lean and obese subjects. J. Obstet. Gynaecol. Res. 2014, 40, 1059–1066. [Google Scholar] [CrossRef]
- Zehir, R.; Karabay, C.Y.; Kocabay, G.; Kalayci, A.; Kaymaz, O.; Aykan, A.; Karabay, E.; Kırma, C.; Kirma, C. Assessment of atrial conduction time in patients with polycystic ovary syndrome. J. Interv. Card. Electrophysiol. 2014, 41, 137–143. [Google Scholar] [CrossRef]
- Erdoğan, E.; Akkaya, M.; Turfan, M.; Batmaz, G.; Bacaksiz, A.; Tasal, A.; Ilhan, M.; Kul, S.; Sonmez, O.; Vatankulu, M.A.; et al. Polycystic ovary syndrome is associated with P-wave prolongation and increased P-wave dispersion. Gynecol. Endocrinol. 2013, 29, 830–833. [Google Scholar] [CrossRef]
- Dunaif, A. Insulin resistance and the polycystic ovary syndrome: Mechanism and implications for pathogenesis. Endocr. Rev. 1997, 18, 774–800. [Google Scholar] [PubMed] [Green Version]
- Sam, S. Obesity and Polycystic Ovary Syndrome. Obes. Manag. 2007, 3, 69–73. [Google Scholar] [CrossRef]
- Magnani, J.W.; Hylek, E.M.; Apovian, C.M. Obesity begets atrial fibrillation: A contemporary summary. Circulation 2013, 128, 401–405. [Google Scholar] [CrossRef] [Green Version]
- Vasan, R.S. Cardiac function and obesity. Heart (Br. Card. Soc.) 2003, 89, 1127–1129. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.R.; Herrero, P.; Schechtman, K.B.; Racette, S.; Waggoner, A.D.; Kisrieva-Ware, Z.; Dence, C.; Klein, S.; Marsala, J.; Meyer, T.; et al. Effect of Obesity and Insulin Resistance on Myocardial Substrate Metabolism and Efficiency in Young Women. Circulation 2004, 109, 2191–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunaif, A.; Segal, K.R.; Futterweit, W.; Dobrjansky, A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes 1989, 38, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Papazoglou, A.S.; Kartas, A.; Samaras, A.; Vouloagkas, I.; Vrana, E.; Moysidis, D.V.; Akrivos, E.; Kotzampasis, G.; Baroutidou, A.; Papanastasiou, A.; et al. Prognostic significance of diabetes mellitus in patients with atrial fibrillation. Cardiovasc. Diabetol. 2021, 20, 1–11. [Google Scholar] [CrossRef]
- Papazoglou, A.S.; Kartas, A.; Moysidis, D.V.; Tsagkaris, C.; Papadakos, S.P.; Bekiaridou, A.; Samaras, A.; Karagiannidis, E.; Papadakis, M.; Giannakoulas, G. Glycemic control and atrial fibrillation: An intricate relationship, yet under investigation. Cardiovasc. Diabetol. 2022, 21, 1–12. [Google Scholar] [CrossRef]
- De Pergola, G.; Pannacciulli, N.; Zamboni, M.; Minenna, A.; Brocco, G.; Sciaraffia, M.; Bosello; Giorgino, R. Homocysteine plasma levels are independently associated with insulin resistance in normal weight, overweight and obese pre-menopausal women. Diabetes Nutr. Metab. 2001, 14, 253–258. [Google Scholar]
- Rong, H.; Huang, L.; Jin, N.; Hong, J.; Hu, J.; Wang, S.; Xie, Y.; Pu, J. Elevated Homocysteine Levels Associated with Atrial Fibrillation and Recurrent Atrial Fibrillation. Int. Hear. J. 2020, 61, 705–712. [Google Scholar] [CrossRef]
- Watanabe, H.; Tanabe, N.; Watanabe, T.; Darbar, D.; Roden, D.M.; Sasaki, S.; Aizawa, Y. Metabolic syndrome and risk of development of atrial fibrillation: The Niigata preventive medicine study. Circulation 2008, 117, 1255–1260. [Google Scholar] [CrossRef] [Green Version]
- Giallauria, F.; Palomba, S.; Manguso, F.; Vitelli, A.; Maresca, L.; Tafuri, D.; Lombardi, G.; Colao, A.; Vigorito, C.; Orio, F. Abnormal heart rate recovery after maximal cardiopulmonary exercise stress testing in young overweight women with polycystic ovary syndrome. Clin. Endocrinol. 2007, 68, 88–93. [Google Scholar] [CrossRef]
- Karabag, T.; Aydin, M.; Dogan, S.M.; Koca, R.; Buyukuysal, C.; Sayin, M.R.; Yavuz, N.; Aydın, M. Investigation of the atrial electromechanical delay duration in Behcet patients by tissue Doppler echocardiography. Eur. Hear. J.-Cardiovasc. Imaging 2011, 13, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Acar, G.; Sayarlioglu, M.; Akcay, A.; Sokmen, A.; Sokmen, G.; Altun, B.; Nacar, A.B.; Gunduz, M.; Tuncer, C. Assessment of Atrial Electromechanical Coupling Characteristics in Patients with Ankylosing Spondylitis. Echocardiography 2009, 26, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Acar, G.; Sayarlioğlu, M.; Akçay, A.; Sökmen, A.; Sökmen, G.; Yalçintaş, S.; Nacar, A.B.; Gündüz, M.; Tuncer, C. Evaluation of atrial electromechanical delay and left atrial mechanical functions in patients with rheumatoid arthritis. Turk Kardiyol. Dernegi Arsivi-Archives Turk. Soc. Cardiol. 2009, 37, 447–453. [Google Scholar]
- Hari, K.J.; Nguyen, T.P.; Soliman, E.Z. Relationship between P-wave duration and the risk of atrial fibrillation. Expert Rev. Cardiovasc. Ther. 2018, 16, 837–843. [Google Scholar] [CrossRef]
- Choi, J.; Kwon, H.; Kim, H.R.; Park, S.; Kim, J.S.; On, Y.K.; Park, K. Electrocardiographic predictors of early recurrence of atrial fibrillation. Ann. Noninvasive Electrocardiol. 2021, 26, e12884. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.-Q.; Zhang, W.; Wang, H.; Sun, X.; Wang, R.; Yang, H.-Y.; Meng, X.-Q.; Zhang, Y.; Wang, H. Assessment of Atrial Electromechanical Coupling and Influential Factors in Nonrheumatic Paroxysmal Atrial Fibrillation. Clin. Cardiol. 2008, 31, 74–78. [Google Scholar] [CrossRef]
- Oliver-Williams, C.; Vassard, D.; Pinborg, A.; Schmidt, L. Polycystic ovary syndrome as a novel risk factor for atrial fibrillation: Results from a national Danish registry cohort study. Eur. J. Prev. Cardiol. 2020, 28, e20–e22. [Google Scholar] [CrossRef]
First Author, Year | Study Type | Country | Sample Size, (N) | PCOS Diagnosis | Outcomes Assessed | Quality Score in NOS (S/C/O-E) |
---|---|---|---|---|---|---|
Bayir et al., 2016 [23] | prospective cohort | Turkey | N = 60: 40 adult women with PCOS and 20 age-matched without PCOS | Rotterdam 2003 criteria |
Tricuspid PA, Inter-AED, Intra-AED. | 3/1/2 |
Gazi et al., 2015 [24] | prospective cohort | Turkey | N = 86: 48 adult women with PCOS and 38 age-matched without PCOS | Rotterdam 2003 criteria |
Septal PA, Tricuspid PA, Inter-AED, Intra-AED. | 3/1/3 |
Tasolar et al., 2014 [25] | observational cohort | Turkey | N = 75: 50 women with PCOS (18–40 years of age) and 25 age-matched without PCOS | Rotterdam 2003 criteria |
Tricuspid PA, Inter-AED, Intra-AED. | 3/1/3 |
Zehir et al., 2014 [26] | observational cohort | Turkey | N = 99: 51 adult women with PCOS and 48 age-matched without PCOS | Rotterdam 2003 criteria |
Tricuspid PA, Inter-AED, Intra-AED. | 4/1/3 |
Erdogan et al., 2013 [27] | cross-sectional study | Turkey | N = 86: 40 women with PCOS (18–40 years of age) and 46 age-matched without PCOS | Rotterdam 2003 criteria |
| 3/1/3 |
Study | Endocrinological Variable Assessed | Women with PCOS | Women without PCOS | p-Value | Significant Association with Inter-AED |
---|---|---|---|---|---|
Bayir et al., 2016 [23] | Fasting glucose (mg/dL) | 78.9 ± 5.8 | 79.0 ± 5.6 | 0.936 | Ν/A |
Gazi et al., 2015 [24] | FSH (mIU/mL) LH (mIU/mL) Estradiol (pg/mL) Testosterone (ng/dL) Fasting glucose (mg/dL) Fasting insulin (μIU/mL) Homeostasis model assessment of insulin resistance (IR) | 5.07 (2.92–10.1) 6.62 (2.35–39.25) 43.2 ± 17.8 75.5 (14.7–314) 86 ± 12 15.28 ± 23.45 1.40 (0.37–36.15) | 7.68 (2.02–19.10) 6.74 (2.03–19.47) 28.8 ± 11.3 17.2 (2.5–44) 87 ± 8 12.74 ± 17.57 1.44 (0.38–18.99) | 0.001 0.442 0.001 0.001 0.945 0.627 0.659 | n.s. n.s. n.s. p = 0.052, β-0.242 (univariate) n.s. n.s. n.s. |
Tasolar et al., 2014 [25] | Estradiol (pg/mL) Testosterone (nmol/L) Fasting glucose (mmol/L) Fasting insulin (mU/L) Homeostasis model assessment of IR | 67.1 ± 10.1 2.25 ± 0.48 4.2 ± 0.35 10 ± 0.7 1.90 ± 0.42 | 109.7 ± 8.3 1.17 ± 0.13 3.9 ± 0.2 5.6 ± 0.6 0.95 ± 0.12 | <0.001 <0.001 n.s. <0.001 <0.001 | r = −0.572, p < 0.001 n.s. r = −0.550, p < 0.001 r = 0.939, p < 0.001 r = 0.940, p < 0.001 β = 0.603, p < 0.001 (multivariate) |
Zehir et al., 2014 [26] | FSH (mIU/mL) LH (mIU/mL) Estradiol (pg/mL) Testosterone (ng/dL) Fasting glucose (mg/dL) Prolactin(ng/mL) DHEA-S (mg/dL) Homeostasis model assessment of IR | 5.4 ± 1.1 6.2 ± 2.0 60.8 ± 5.07 8.1 ± 7.4 82.3 ± 4.8 17.2 ± 1.4 293.2 ± 62.3 3.1 ± 0.7 | 5.5 ± 1.1 6.1 ± 1.0 58.9 ± 4.8 52.9 ± 6.1 86.3 ± 5.8 16.7 ± 1.2 245.0 ± 29.2 1.6 ± 0.4 | n.s. n.s. n.s. <0.001 n.s. n.s. <0.001 <0.001 | N/A N/A N/A n.s. N/A N/A n.s. r = 0.680, p < 0.001 |
Erdogan et al., 2013 [27] | Fasting glucose (mg/dL) Fasting insulin (mU/L) Homeostasis model assessment of IR | 87 ± 6 19.8 ± 20.3 4.24 ± 4.17 | 88 ± 4 9.6 ± 3.1 2.07 ± 0.72 | n.s. 0.014 0.013 | N/A N/A N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moysidis, D.V.; Papazoglou, A.S.; Tsagkaris, C.; Oikonomou, V.; Loudovikou, A.; Kartas, A.; Stalikas, N.; Karagiannidis, E.; Găman, M.-A.; Papadakis, M.; et al. Polycystic Ovary Syndrome Triggers Atrial Conduction Disorders: A Systematic Review and Meta-Analysis. Eur. J. Investig. Health Psychol. Educ. 2022, 12, 802-813. https://doi.org/10.3390/ejihpe12070059
Moysidis DV, Papazoglou AS, Tsagkaris C, Oikonomou V, Loudovikou A, Kartas A, Stalikas N, Karagiannidis E, Găman M-A, Papadakis M, et al. Polycystic Ovary Syndrome Triggers Atrial Conduction Disorders: A Systematic Review and Meta-Analysis. European Journal of Investigation in Health, Psychology and Education. 2022; 12(7):802-813. https://doi.org/10.3390/ejihpe12070059
Chicago/Turabian StyleMoysidis, Dimitrios V., Andreas S. Papazoglou, Christos Tsagkaris, Vasileios Oikonomou, Anna Loudovikou, Anastasios Kartas, Nikolaos Stalikas, Efstratios Karagiannidis, Mihnea-Alexandru Găman, Marios Papadakis, and et al. 2022. "Polycystic Ovary Syndrome Triggers Atrial Conduction Disorders: A Systematic Review and Meta-Analysis" European Journal of Investigation in Health, Psychology and Education 12, no. 7: 802-813. https://doi.org/10.3390/ejihpe12070059
APA StyleMoysidis, D. V., Papazoglou, A. S., Tsagkaris, C., Oikonomou, V., Loudovikou, A., Kartas, A., Stalikas, N., Karagiannidis, E., Găman, M. -A., Papadakis, M., Christodoulaki, C., & Panagopoulos, P. (2022). Polycystic Ovary Syndrome Triggers Atrial Conduction Disorders: A Systematic Review and Meta-Analysis. European Journal of Investigation in Health, Psychology and Education, 12(7), 802-813. https://doi.org/10.3390/ejihpe12070059