Neuroarchitecture Assessment: An Overview and Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Creating Database
2.2. Analysis Using VOSviewers
2.3. Analysis Using SciMAT
- “Themes in the upper-right quadrant are both well developed and important for the structuring of a research field. They are known as the motor-themes of the specialty, given that they present strong centrality and high density. The placement of themes in this quadrant implies that they are related externally to concepts applicable to other themes that are conceptually closely related”.
- “Themes in the upper-left quadrant have well developed internal ties but unimportant external ties and so are of only marginal importance for the field. These themes are very specialized and peripheral in character”.
- “Themes in the lower-left quadrant are both weakly developed and marginal. The themes of this quadrant have low density and low centrality, mainly representing either emerging or disappearing themes”.
- “Themes in the lower-right quadrant are important for a research field but are not developed. So, this quadrant groups transversal and general, basic themes”.
3. Results
3.1. Thematic Clusters: Term Co-Occurrence Analysis
3.2. Thematic Focus Transition over Time
3.2.1. Conceptual Structure and Evolution of the Field
First Period
Second Period
3.3. Influential Journals
3.4. Major Contributing Countries
3.5. Prominent Publications
3.6. Prominent Authors
4. Discussion
4.1. Theoretical Implications
4.2. Practical Implications
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Higuera-Trujillo, J.; Llinares, C.; Macagno, E. The Cognitive-Emotional Design and Study of Architectural Space: A Scoping Review of Neuroarchitecture and Its Precursor Approaches. Sensors 2021, 21, 2193. [Google Scholar] [CrossRef]
- Homolja, M.; Maghool, S.A.H.; Schnabel, M.A. The Impact of Moving through the Built Environment on Emotional and Neurophysiological State-A Systematic Literature Review. In Proceedings of the 25th International Conference on Computer-Aided Architectural Design, Bangkok, Thailand, 5–6 August 2020. [Google Scholar]
- LeDoux, J. Remembrance of emotions past. In The Jossey-Bass Reader on the Brain and Learning; American Psychological Association: Washington, DC, USA, 2008; pp. 151–179. [Google Scholar]
- Eberhard, J.P. Applying Neuroscience to Architecture. Neuron 2009, 62, 753–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, G.W.; McCoy, J.M. When buildings don’t work: The role of architecture in human health. J. Environ. Psychol. 1998, 18, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, K.T.; Evans, G.W. The built environment and mental health. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Papale, P.; Chiesi, L.; Rampinini, A.; Pietrini, P.; Ricciardi, E. When Neuroscience ‘Touches’ Architecture: From Hapticity to a Supramodal Functioning of the Human Brain. Front. Psychol. 2016, 7, 866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azzazy, S.; Ghaffarianhoseini, A.; GhaffarianHoseini, A.; Naismith, N.; Doborjeh, Z. A critical review on the impact of built environment on users’ measured brain activity. Arch. Sci. Rev. 2021, 64, 319–335. [Google Scholar] [CrossRef]
- Banaei, M.; Hatami, J.; Yazdanfar, A.; Gramann, K. Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics. Front. Hum. Neurosci. 2017, 11, 477. [Google Scholar] [CrossRef]
- Edelstein, E.A. Building Health. HERD Health Environ. Res. Des. J. 2008, 1, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Nanda, U.; Pati, D.; Ghamari, H.; Bajema, R. Lessons from neuroscience: Form follows function, emotions follow form. Intell. Build. Int. 2013, 5, 61–78. [Google Scholar] [CrossRef]
- Vartanian, O.; Navarrete, G.; Chatterjee, A.; Fich, L.B.; Leder, H.; Modroño, C.; Nadal, M.; Rostrup, N.; Skov, M. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture. Proc. Natl. Acad. Sci. USA 2013, 110, 10446–10453. [Google Scholar] [CrossRef] [Green Version]
- Sternberg, E.M.; Wilson, M.A. Neuroscience and Architecture: Seeking Common Ground. Cell 2006, 127, 239–242. [Google Scholar] [CrossRef] [Green Version]
- Karakas, T.; Yildiz, D. Exploring the influence of the built environment on human experience through a neuroscience approach: A systematic review. Front. Arch. Res. 2020, 9, 236–247. [Google Scholar] [CrossRef]
- Robinson, S. John Dewey and the dialogue between architecture and neuroscience. Arch. Res. Q. 2015, 19, 361–367. [Google Scholar] [CrossRef]
- Keshavarz, B.; Campos, J.L.; Berti, S. Vection lies in the brain of the beholder: EEG parameters as an objective measurement of vection. Front. Psychol. 2015, 6, 1581. [Google Scholar] [CrossRef] [Green Version]
- Gegenfurtner, A.; Kok, E.M.; Van Geel, K.; De Bruin, A.B.H.; Sorger, B. Neural correlates of visual perceptual expertise: Evidence from cognitive neuroscience using functional neuroimaging. Front. Learn. Res. 2017, 5, 14–30. [Google Scholar] [CrossRef] [Green Version]
- Misulis, K.E. Atlas of EEG, Seizure Semiology, and Management; Oxford University Press (OUP): Oxford, UK, 2013. [Google Scholar]
- Schoenberg, P.L.; Ruf, A.; Churchill, J.; Brown, D.P.; Brewer, J.A. Mapping complex mind states: EEG neural substrates of meditative unified compassionate awareness. Conscious. Cognit. 2018, 57, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Crosson, B.; Hampstead, B.M.; Krishnamurthy, L.C.; Krishnamurthy, V.; McGregor, K.M.; Nocera, J.R.; Roberts, S.; Rodriguez, A.D.; Tran, S.M. Advances in neurocognitive rehabilitation research from 1992 to 2017: The ascension of neural plasticity. Neuropsychology 2017, 31, 900–920. [Google Scholar] [CrossRef] [PubMed]
- Choo, H.; Nasar, J.L.; Nikrahei, B.; Walther, D.B. Neural codes of seeing architectural styles. Sci. Rep. 2017, 7, 40201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shemesh, A.; Talmon, R.; Karp, O.; Amir, I.; Bar, M.; Grobman, Y.J. Affective response to architecture-investigating human reaction to spaces with different geometry. Arch. Sci. Rev. 2016, 60, 116–125. [Google Scholar] [CrossRef]
- Ergan, S.; Shi, Z.; Yu, X. Towards quantifying human experience in the built environment: A crowdsourcing based experiment to identify influential architectural design features. J. Build. Eng. 2018, 20, 51–59. [Google Scholar] [CrossRef]
- Vecchiato, G.; Jelic, A.; Tieri, G.; Maglione, A.G.; De Matteis, F.; Babiloni, F. Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments. Cognit. Process. 2015, 16, 425–429. [Google Scholar] [CrossRef] [Green Version]
- Roe, J.J.; Thompson, C.W.; Aspinall, P.A.; Brewer, M.J.; Duff, E.I.; Miller, D.; Mitchell, R.; Clow, A. Green Space and Stress: Evidence from Cortisol Measures in Deprived Urban Communities. Int. J. Environ. Res. Public Health 2013, 10, 4086–4103. [Google Scholar] [CrossRef] [Green Version]
- Banaei, M.; Yazdanfar, A.; Nooreddin, M.; Yoonessi, A. Enhancing Urban Trails Design Quality by Using Electroencephalography Device. Procedia-Soc. Behav. Sci. 2015, 201, 386–396. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.; Yu, B.; Greenwood-Nimmo, M. Modelling Asymmetric Cointegration and Dynamic Multipliers in a Nonlinear ARDL Framework. In Festschrift in Honor of Peter Schmidt; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2014; pp. 281–314. [Google Scholar]
- Küller, R.; Mikellides, B.; Janssens, J. Color, arousal, and performance-A comparison of three experiments. Color Res. Appl. 2009, 34, 141–152. [Google Scholar] [CrossRef]
- Naghibi Rad, P.; Shahroudi, A.A.; Shabani, H.; Ajami, S.; Lashgari, R. Encoding Pleasant and Unpleasant Expression of the Architectural Window Shapes: An ERP Study. Front. Behav. Neurosci. 2019, 13, 186. [Google Scholar] [CrossRef] [Green Version]
- Chamilothori, K.; Chinazzo, G.; Rodrigues, J.; Dan-Glauser, E.; Wienold, J.; Andersen, M. Subjective and physiological responses to façade and sunlight pattern geometry in virtual reality. Build. Environ. 2019, 150, 144–155. [Google Scholar] [CrossRef]
- Patel, T.R. Environmental enrichment: Aging and memory. Yale J. Biol. Med. 2012, 85, 491–500. [Google Scholar]
- Tang, I.-C.; Tsai, Y.-P.; Lin, Y.-J.; Chen, J.-H.; Hsieh, C.-H.; Hung, S.-H.; Sullivan, W.; Tang, H.-F.; Chang, C.-Y. Using functional Magnetic Resonance Imaging (fMRI) to analyze brain region activity when viewing landscapes. Landsc. Urban Plan. 2017, 162, 137–144. [Google Scholar] [CrossRef]
- Aspinall, P.; Mavros, P.; Coyne, R.; Roe, J. The urban brain: Analysing outdoor physical activity with mobile EEG. Br. J. Sports Med. 2015, 49, 272–276. [Google Scholar] [CrossRef] [Green Version]
- Neale, C.; Aspinall, P.; Roe, J.; Tilley, S.; Mavros, P.; Cinderby, S.; Coyne, R.; Thin, N.; Bennett, G.; Thompson, C.W. The Aging Urban Brain: Analyzing Outdoor Physical Activity Using the Emotiv Affectiv Suite in Older People. J. Hered. 2017, 94, 869–880. [Google Scholar] [CrossRef] [Green Version]
- Naghibi Rad, P.; Behzadi, F.; Yazdanfar, A.; Ghamari, H.; Zabeh, E.; Lashgari, R. Cognitive and perceptual influences of architectural and urban environments with an emphasis on the experimental procedures and techniques. PsyarXiv 2021, arXiv:10.31234/osf.io/d2h4m. [Google Scholar]
- Norwood, M.F.; Lakhani, A.; Maujean, A.; Zeeman, H.; Creux, O.; Kendall, E. Brain activity, underlying mood and the environment: A systematic review. J. Environ. Psychol. 2019, 65, 101321. [Google Scholar] [CrossRef]
- de Paiva, A.; Jedon, R. Short- and long-term effects of architecture on the brain: Toward theoretical formalization. Front. Arch. Res. 2019, 8, 564–571. [Google Scholar] [CrossRef]
- Cobo, M.J.; Lopez-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Inf. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Nalau, J.; Verrall, B. Mapping the evolution and current trends in climate change adaptation science. Clim. Risk Manag. 2021, 32, 100290. [Google Scholar] [CrossRef]
- Ghamari, H.; Sharifi, A. Mapping the Evolutions and Trends of Literature on Wayfinding in Indoor Environments. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 585–606. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2009, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Cobo, M.; López-Herrera, A.; Herrera-Viedma, E.; Herrera, F. SciMAT: A new science mapping analysis software tool. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1609–1630. [Google Scholar] [CrossRef]
- Beukeboom, C.J.; Langeveld, D.; Tanja-Dijkstra, K. Stress-Reducing Effects of Real and Artificial Nature in a Hospital Waiting Room. J. Altern. Complement. Med. 2012, 18, 329–333. [Google Scholar] [CrossRef]
- De Vries, S.; Verheij, R.A.; Groenewegen, P.P.; Spreeuwenberg, P. Natural Environments—Healthy Environments? An Exploratory Analysis of the Relationship between Greenspace and Health. Environ. Plan. A 2003, 35, 1717–1731. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira-Szejnfeld, P.S.; Levine, D.; Melo, A.S.D.O.; Amorim, M.; Batista, A.G.M.; Chimelli, L.; Tanuri, A.; Aguiar, R.; Malinger, G.; Ximenes, R.; et al. Congenital Brain Abnormalities and Zika Virus: What the Radiologist Can Expect to See Prenatally and Postnatally. Radiology 2016, 281, 203–218. [Google Scholar] [CrossRef]
- Vartanian, O.; Navarrete, G.; Chatterjee, A.; Fich, L.B.; González-Mora, J.L.; Leder, H.; Modroño, C.; Nadal, M.; Rostrup, N.; Skov, M. Architectural design and the brain: Effects of ceiling height and perceived enclosure on beauty judgments and approach-avoidance decisions. J. Environ. Psychol. 2015, 41, 10–18. [Google Scholar] [CrossRef]
- Zhang, W.; He, X.; Liu, S.; Li, T.; Li, J.; Tang, X.; Lai, S. Neural correlates of appreciating natural landscape and landscape garden: Evidence from an fMRI study. Brain Behav. 2019, 9, e01335. [Google Scholar] [CrossRef]
- Bermudez, J.; Križaj, D.; Lipschitz, D.L.; Bueler, C.E.; Rogowska, J.; Yurgelun-Todd, D.; Nakamura, Y. Externally-induced meditative states: An exploratory fMRI study of architects’ responses to contemplative architecture. Front. Arch. Res. 2017, 6, 123–136. [Google Scholar] [CrossRef]
- Lynch, K. The Image of the City; MIT Press: Cambridge, MA, USA, 1960; Volume 11. [Google Scholar]
- Garland, B. Neuroscience and the Law: Brain, Mind, and the Scales of Justice: A Report on an Invitational Meeting Convened by the American Association for the Advancement of Science and the Dana Foundation; DANA Press: New York, NY, USA, 2004. [Google Scholar]
- Bohbot, V.D.; Iaria, G.; Petrides, M. Hippocampal Function and Spatial Memory: Evidence From Functional Neuroimaging in Healthy Participants and Performance of Patients With Medial Temporal Lobe Resections. Neuropsychology 2004, 18, 418–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cubukcu, E.; Nasar, J.L. Relation of Physical Form to Spatial Knowledge in Largescale Virtual Environments. Environ. Behav. 2005, 37, 397–417. [Google Scholar] [CrossRef] [Green Version]
- Bermudez-Rattoni, F. Neural Plasticity and Memory: From Genes to Brain Imaging. In Advances in Vagal Afferent Neurobiology; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Kandel, E.; Schwartz, J.; Jessell, T.; Siegelbaum, S.; Hudspeth, A.; Mack, S. Prefrontal cortex, hippocampus, and the biology of explicit memory storage. In Principles of Neural Science; McGraw-Hill: New York, NY, USA, 2013. [Google Scholar]
- Milner, A.D.; Rugg, M.D. The Neuropsychology of Consciousness; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Díaz, F.J.; Martínez-Zarzuela, M.; Antón-Rodríguez, M.; González-Ortega, D. Double recurrent interaction V1–V2–V4 based neural architecture for color natural scene boundary detection and surface perception. Appl. Soft Comput. 2014, 21, 250–264. [Google Scholar] [CrossRef]
- Zhang, Y.; Markham, P.; Xia, T.; Chen, L.; Ye, Y.; Wu, Z.; Yuan, Z.; Wang, L.; Bank, J.; Burgett, J.; et al. Wide-Area Frequency Monitoring Network (FNET) Architecture and Applications. IEEE Trans. Smart Grid 2010, 1, 159–167. [Google Scholar] [CrossRef]
- Bower, I.; Tucker, R.; Enticott, P. Impact of built environment design on emotion measured via neurophysiological correlates and subjective indicators: A systematic review. J. Environ. Psychol. 2019, 66, 101344. [Google Scholar] [CrossRef]
- Carretié, L.; Iglesias, J.; García-Calvo, T.; Ballesteros, M. N300, P300 and the emotional processing of visual stimuli. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 298–303. [Google Scholar] [CrossRef]
- Cuthbert, B.N.; Schupp, H.T.; Bradley, M.M.; Birbaumer, N.; Lang, P.J. Brain potentials in affective picture processing: Covariation with autonomic arousal and affective report. Biol. Psychol. 2000, 52, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Pollatos, O.; Kirsch, W.; Schandry, R. On the relationship between interoceptive awareness, emotional experience, and brain processes. Cognit. Brain Res. 2005, 25, 948–962. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Gutiérrez, P.A.; Giraldo, E.; Bueno-López, M.; Molinas, M. Localization of active brain sources from EEG signals using empirical mode decomposition: A comparative study. Front. Integr. Neurosci. 2018, 12, 55. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.; Quelhas-Costa, E.; Baptista, J.S. Changes in EEG amplitude (Alpha and Beta waves) with Thermal environment. DYNA 2016, 83, 87. [Google Scholar] [CrossRef]
- Pati, D.; O’Boyle, M.; Amor, C.; Hou, J.; Valipoor, S.; Fang, D. Neural Correlates of Nature Stimuli: An fMRI Study. HERD Health Environ. Res. Des. J. 2014, 7, 9–28. [Google Scholar] [CrossRef] [PubMed]
- Mavros, P.; Austwick, M.Z.; Smith, A.H. Geo-EEG: Towards the Use of EEG in the Study of Urban Behaviour. Appl. Spat. Anal. Policy 2016, 9, 191–212. [Google Scholar] [CrossRef] [Green Version]
- Frumkin, H.; Bratman, G.N.; Breslow, S.J.; Cochran, B.; Kahn, P.H., Jr.; Lawler, J.J.; Levin, P.S.; Tandon, P.S.; Varanasi, U.; Wolf, K.L. Nature contact and human health: A research agenda. Environ. Health Perspect. 2017, 125, 075001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, J. The Built Environment Social Behavior: Architecture Determinism Rexamined Viair; WIT Press: Southampton, UK, 1987. [Google Scholar]
- Rapoport, A. Spatial organization and the built environment. In Companion Encyclopedia of Anthropology: Humanity, Culture and Social Life; Routledge: Oxfordshire, UK, 1994; pp. 460–502. [Google Scholar]
- Robinson, S.; Pallasmaa, J. Mind in Architecture: Neuroscience, Embodiment, and the Future of Design; MIT Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Zeisel, J. Inquiry by Design: Environment/Behavior/Neuroscience in Architecture, Interiors, Landscape, and Planning; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Epstein, R.; Harris, A.; Stanley, D.; Kanwisher, N. The Parahippocampal Place Area: Recognition, Navigation, or Encoding? Neuron 1999, 23, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Pykett, J. Brain Culture: Shaping Policy through Neuroscience; Policy Press: Bristol, UK, 2015. [Google Scholar]
- Arbib, M.A. Brains, machines and buildings: Towards a neuromorphic architecture. Intell. Build. Int. 2012, 4, 147–168. [Google Scholar] [CrossRef]
- Igarashi, M.; Yamamoto, T.; Lee, J.; Song, C.; Ikei, H.; Miyazaki, Y. Effects of stimulation by three-dimensional natural images on prefrontal cortex and autonomic nerve activity: A comparison with stimulation using two-dimensional images. Cognit. Process. 2014, 15, 551–556. [Google Scholar] [CrossRef]
- Lee, S.; Kline, R. Wayfinding study in virtual environments: The elderly vs. the younger-aged groups. Int. J. Archit. Res. 2011, 5, 63–76. [Google Scholar]
- Kober, S.E.; Neuper, C. Sex differences in human EEG theta oscillations during spatial navigation in virtual reality. Int. J. Psychophysiol. 2011, 79, 347–355. [Google Scholar] [CrossRef]
- Lin, M.K.; Nicolini, O.; Waxenegger, H.; Galloway, G.J.; Ullmann, J.F.P.; Janke, A.L. Interpretation of Medical Imaging Data with a Mobile Application: A Mobile Digital Imaging Processing Environment. Front. Neurol. 2013, 4, 85. [Google Scholar] [CrossRef] [Green Version]
- Ames, D.L.; Fiske, S.T. Cultural neuroscience. Asian J. Soc. Psychol. 2010, 13, 72–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cupchik, G.C. From perception to production: A multilevel analysis of the aesthetic process. In Emerging Visions of the Aesthetic Process: Psychology, Semiology, and Philosophy; Cambridge University Press: Cambridge, UK, 1992; pp. 61–81. [Google Scholar]
- Belongie, S.; Malik, J.; Puzicha, J. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 509–522. [Google Scholar] [CrossRef] [Green Version]
- Field, D.J. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 1987, 4, 2379–2394. [Google Scholar] [CrossRef] [Green Version]
- Maguire, E.A.; Frackowiak, R.; Frith, C. Recalling Routes around London: Activation of the Right Hippocampus in Taxi Drivers. J. Neurosci. 1997, 17, 7103–7110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bar, M. Visual objects in context. Nat. Rev. Neurosci. 2004, 5, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Solstad, T.; Boccara, C.; Kropff, E.; Moser, M.-B.; Moser, E.I. Representation of Geometric Borders in the Entorhinal Cortex. Science 2008, 322, 1865–1868. [Google Scholar] [CrossRef] [Green Version]
- Spiers, H.J.; Maguire, E.A. Thoughts, behaviour, and brain dynamics during navigation in the real world. NeuroImage 2006, 31, 1826–1840. [Google Scholar] [CrossRef]
- Anderson, M.I.; Jeffery, K.J. Heterogeneous Modulation of Place Cell Firing by Changes in Context. J. Neurosci. 2003, 23, 8827–8835. [Google Scholar] [CrossRef] [Green Version]
- Shonkoff, J.P.; Garner, A.S. The lifelong effects of early childhood adversity and toxic stress. Pediatrics 2012, 129, e232–e246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Praag, H.; Kempermann, G.; Gage, F.H. Neural consequences of enviromental enrichment. Nat. Rev. Neurosci. 2000, 1, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Nithianantharajah, J.; Hannan, A. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat. Rev. Neurosci. 2006, 7, 697–709. [Google Scholar] [CrossRef] [PubMed]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
Keyword | Occurrences | Percentage | Total Link Strength | |
---|---|---|---|---|
1 | Architecture | 43 | 5.2 | 181 |
2 | Neuroscience | 41 | 5 | 154 |
3 | Brain | 36 | 4.3 | 139 |
4 | Brain responses | 30 | 3.6 | 120 |
5 | EEG | 30 | 3.6 | 118 |
6 | Memory | 24 | 3 | 80 |
7 | Design | 23 | 2.8 | 101 |
8 | Perception | 23 | 2.8 | 92 |
9 | fMRI | 23 | 2.8 | 78 |
10 | Stress | 20 | 2.4 | 62 |
11 | Representations | 19 | 2.3 | 81 |
12 | Cognition | 19 | 2.3 | 75 |
13 | Virtual reality | 18 | 2.2 | 92 |
14 | Environments | 18 | 2.2 | 77 |
15 | Hippocampus | 18 | 2.2 | 61 |
16 | Attention | 17 | 2 | 74 |
17 | Information | 17 | 2 | 66 |
18 | Performance | 17 | 2 | 62 |
19 | Experience | 16 | 1.9 | 86 |
20 | Wayfinding | 15 | 1.8 | 55 |
Keyword Preliminary Period (1992–2015) | n | % | Keyword Developing Period (2016–2021) | n | % | ||
---|---|---|---|---|---|---|---|
1 | Memory | 15 | 5.4 | 1 | Neuroscience | 31 | 7 |
2 | Brain | 13 | 4.7 | 2 | Architecture | 31 | 7 |
3 | Architecture | 12 | 4.4 | 3 | EEG | 24 | 5.4 |
4 | Representations | 12 | 4.4 | 4 | Brain | 23 | 5.2 |
5 | Hippocampus | 12 | 4.4 | 5 | Brain Response | 19 | 4.3 |
6 | Brain responses | 11 | 4 | 6 | Design | 17 | 3.8 |
7 | Neuroscience | 11 | 4 | 7 | fMRI | 16 | 3.6 |
8 | Information | 10 | 3.6 | 8 | Virtual Reality | 15 | 3.4 |
9 | Prefrontal cortex | 9 | 3.2 | 9 | Perception | 15 | 3.4 |
10 | Cognition | 9 | 3.2 | 10 | Performance | 14 | 3.2 |
11 | Model | 9 | 3.2 | 11 | Experience | 13 | 2.9 |
12 | Stress | 9 | 3.2 | 12 | Attention | 13 | 2.9 |
13 | Perception | 8 | 2.9 | 13 | Environments | 12 | 2.7 |
14 | Neural | 7 | 2.5 | 14 | Stress | 11 | 2.5 |
15 | fMRI | 7 | 2.5 | 15 | Built environment | 10 | 2.3 |
16 | Cortex | 7 | 2.5 | 16 | Esthetics | 10 | 2.3 |
17 | Emotion | 6 | 2.2 | 17 | Wayfinding | 10 | 2.3 |
18 | Orientation | 6 | 2.2 | 18 | Cognition | 10 | 2.3 |
19 | Place cells | 6 | 2.2 | 19 | Memory | 9 | 2 |
20 | EEG | 6 | 2.2 | 20 | Emotion | 8 | 1.8 |
21 | Recognition | 6 | 2.2 | 21 | Color | 7 | 1.6 |
22 | Design | 6 | 2.2 | 22 | Behavior | 7 | 1.6 |
23 | Health | 6 | 2.2 | 23 | Neuro architecture | 7 | 1.6 |
24 | Environments | 6 | 2.2 | 24 | Light | 7 | 1.6 |
25 | Receptive fields | 5 | 1.8 | 25 | Cognitive architecture | 7 | 1.6 |
26 | Path integration | 5 | 1.8 | 26 | Model | 7 | 1.6 |
27 | Wayfinding | 5 | 1.8 | 27 | Recognition | 7 | 1.6 |
28 | Neurons | 5 | 1.8 | 28 | Representations | 7 | 1.6 |
29 | Spatial navigation | 4 | 1.4 | 29 | Information | 7 | 1.6 |
30 | Networks | 4 | 1.4 | 30 | Environmental psychology | 6 | 1.3 |
31 | Object recognition | 4 | 1.4 | 31 | Exposure | 6 | 1.3 |
32 | parietal cortex | 4 | 1.4 | 32 | Benefits | 6 | 1.3 |
33 | Esthetics | 4 | 1.4 | 33 | Organization | 6 | 1.3 |
34 | Attention | 4 | 1.4 | 34 | Hippocampus | 6 | 1.3 |
35 | Dynamics | 4 | 1.4 | 35 | Health | 6 | 1.3 |
36 | Embodiment | 4 | 1.4 | 36 | Preference | 5 | 1.1 |
37 | Organization | 4 | 1.4 | 37 | Judgments | 5 | 1.1 |
38 | Inferotemporal cortex | 4 | 1.4 | 38 | System | 5 | 1.1 |
39 | Features | 4 | 1.4 | 39 | Cortex | 5 | 1.1 |
40 | light | 4 | 1.4 | 40 | Impact | 5 | 1.1 |
41 | Pain | 4 | 1.4 | 41 | Prefrontal cortex | 5 | 1.1 |
Author | Citations | Total Link Strength |
---|---|---|
Ulrich, R.S. | 72 | 424 |
Vartanian, O. | 60 | 412 |
Burgess, N. | 39 | 200 |
Bar, M. | 38 | 200 |
Mcewen, B.S. | 37 | 20 |
Kaplan, S. | 36 | 280 |
Okeefe, J. | 35 | 177 |
Maguire, E.A. | 33 | 156 |
Friston, K.J. | 30 | 71 |
Eberhard, J.P. | 27 | 139 |
Hubel, D.H. | 27 | 49 |
Pallasmaa, J. | 27 | 121 |
Mallgrave, H.F. | 26 | 138 |
Sun, R. | 26 | 30 |
Chatterjee, A. | 25 | 286 |
Slater, M. | 25 | 134 |
Gibson, J.J. | 24 | 99 |
Rolls, E.T. | 24 | 85 |
Evans, G.W. | 23 | 196 |
Dehaene, S. | 22 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghamari, H.; Golshany, N.; Naghibi Rad, P.; Behzadi, F. Neuroarchitecture Assessment: An Overview and Bibliometric Analysis. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 1362-1387. https://doi.org/10.3390/ejihpe11040099
Ghamari H, Golshany N, Naghibi Rad P, Behzadi F. Neuroarchitecture Assessment: An Overview and Bibliometric Analysis. European Journal of Investigation in Health, Psychology and Education. 2021; 11(4):1362-1387. https://doi.org/10.3390/ejihpe11040099
Chicago/Turabian StyleGhamari, Hessam, Nasrin Golshany, Parastou Naghibi Rad, and Farzaneh Behzadi. 2021. "Neuroarchitecture Assessment: An Overview and Bibliometric Analysis" European Journal of Investigation in Health, Psychology and Education 11, no. 4: 1362-1387. https://doi.org/10.3390/ejihpe11040099
APA StyleGhamari, H., Golshany, N., Naghibi Rad, P., & Behzadi, F. (2021). Neuroarchitecture Assessment: An Overview and Bibliometric Analysis. European Journal of Investigation in Health, Psychology and Education, 11(4), 1362-1387. https://doi.org/10.3390/ejihpe11040099