Preparation of Microcellular Foams by Supercritical Carbon Dioxide: A Case Study of Thermoplastic Polyurethane 70A
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sarver, J.A.; Kiran, E. Foaming of polymers with carbon dioxide-The year-in-review-2019. J. Supercrit. Fluids 2021, 173, 105166. [Google Scholar] [CrossRef]
- Chauvet, M.; Sauceau, M.; Fages, J. Extrusion assisted by supercritical CO2: A review on its application to biopolymers. J. Supercrit. Fluids 2017, 120, 408–420. [Google Scholar] [CrossRef] [Green Version]
- Di Maioa, E.; Kiran, E. Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges. J. Supercrit. Fluids 2018, 134, 157–166. [Google Scholar] [CrossRef]
- Jiménez, J.A.V.; Le Moigne, N.; Bénézet, J.C.; Sauceau, M.; Sescousse, R.; Fages, J. Foaming of PLA composites by supercritical fluid-assisted processes: A review. Molecules 2020, 25, 3408. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.L.; Zhao, M.; Park, M.; Park, S.J. Recent trends of foaming in polymer processing: A review. Polymers 2019, 11, 953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Zhao, G.; Wang, G.; Zhang, L.; Gong, J.; Shi, Z. Biodegradable PLA/PBS open-cell foam fabricated by supercritical CO2 foaming for selective oil-adsorption. Sep. Purif. Technol. 2021, 257, 117949. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, J.; Zhu, Y.; Zhang, J.; Luo, G.; Cao, P.; Shen, Q.; Zhang, L. Correlation between the structure and compressive property of PMMA microcellular foams fabricated by supercritical CO2 foaming method. Polymers 2020, 12, 315. [Google Scholar] [CrossRef]
- Li, B.; Ma, X.; Zhao, G.; Wang, G.; Zhang, L.; Gong, J. Green fabrication method of layered and open-cell polylactide foams for oil-sorption via pre-crystallization and supercritical CO2-inducedmelting. J. Supercrit. Fluids 2020, 162, 104854. [Google Scholar] [CrossRef]
- Hatami, T.; Johner, J.C.F.; Cappuccio de Castro, K.; Mei, L.H.I.; Vieira, M.G.A.; Meireles, M.A.A. New insight into a step-by-step modeling of supercritical CO2 foaming to fabricate poly(ε-caprolactone) scaffold. Ind. Eng. Chem. Res. 2020, 59, 20033–20044. [Google Scholar] [CrossRef]
- Song, C.; Luo, Y.; Liu, Y.; Li, S.; Xi, Z.; Zhao, L.; Cen, L.; Lu, E. Fabrication of PCL scaffolds by supercritical CO2 foaming based on the combined effects of rheological and crystallization properties. Polymers 2020, 12, 780. [Google Scholar] [CrossRef] [Green Version]
- Nofar, M.; Küçük, E.B.; Batı, B. Effect of hard segment content on the microcellular foaming behavior of TPU using supercritical CO2. J. Supercrit. Fluids 2019, 153, 104590. [Google Scholar] [CrossRef]
- Nofar, M.; Batı, B.; Küçük, E.B.; Jalali, A. Effect of soft segment molecular weight on the microcellular foaming behavior of TPU using supercritical CO2. J. Supercrit. Fluids 2020, 160, 104816. [Google Scholar] [CrossRef]
- Wang, G.; Wan, G.; Chai, J.; Li, B.; Zhao, G.; Mu, Y.; Park, C.B. Structure-tunable thermoplastic polyurethane foams fabricated by supercritical carbon dioxide foaming and their compressive mechanical properties. J. Supercrit. Fluids 2019, 149, 127–137. [Google Scholar] [CrossRef]
- Wang, S.; Xue, S.; Ge, C.; Ren, Q.; Zhao, D.; Zhai, W. Preparation of fluorescent thermoplastic polyurethane microcellular foam films blown by supercritical CO2. J. Cell. Plast. 2019, 55, 483–505. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, L.; Feng, L.; Chen, C. Microcellular thermoplastic polyurethanes and their flexible properties prepared by mold foaming process with supercritical CO2. J. Cell. Plast. 2019, 55, 615–631. [Google Scholar] [CrossRef]
- Yeh, S.K.; Liu, Y.C.; Chu, C.C.; Chang, K.C.; Wang, S.F. Mechanical properties of microcellular and nanocellular thermoplastic polyurethane nanocomposite foams created using supercritical carbon dioxide. Ind. Eng. Chem. Res. 2017, 56, 8499–8507. [Google Scholar] [CrossRef]
- Liu, X.; Wei, C.; Deng, X.; Cao, X. Comparative study on foaming process of thermoplastic polyester and polyether polyurethane with supercritical CO2 as foaming agent. Polym. Plast. Technol. Mater. 2020, 59, 457–468. [Google Scholar] [CrossRef]
- Yeh, S.K.; Chen, Y.R.; Kang, T.W.; Tseng, T.J.; Peng, S.P.; Chu, C.C.; Rwei, S.P.; Guo, W.J. Different approaches for creating nanocellular TPU foams by supercritical CO2 foaming. J. Polym. Res. 2018, 25, 30. [Google Scholar] [CrossRef]
- Prasad, A.; Fotou, G.; Li, S. The effect of polymer hardness, pore size, and porosity on the performance of thermoplastic polyurethane-based chemical mechanical polishing pads. J. Mater. Res. 2013, 28, 2380–2393. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Lee, S.J.; Yoo, Y.H.; Park, K.H.; Kang, H.J. Compression molding of thermoplastic polyurethane foam sheets with beads expanded by supercritical CO2 foaming. Polymers 2021, 13, 656. [Google Scholar] [CrossRef] [PubMed]
- Wendels, S.; Avérous, L. Biobased polyurethanes for biomedical applications. Bioact. Mater. 2021, 6, 1083–1106. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liao, X.; Guo, F.; Wang, G.; Yan, Z.; Liu, F.; Li, G. Facile fabrication of lightweight shape memory thermoplastic polyurethane/polylactide foams by supercritical carbon dioxide foaming. Ind. Eng. Chem. Res. 2020, 59, 7611–7623. [Google Scholar] [CrossRef]
- Li, H.; Sinha, T.K.; Oh, J.S.; Kim, J.K. Soft and flexible bilayer thermoplastic polyurethane foam for development of bioinspired artificial skin. ACS Appl. Mater. Interfaces 2018, 10, 14008–14016. [Google Scholar] [CrossRef]
- Janik, H.; Marzec, M. A review: Fabrication of porous polyurethane scaffolds. Mater. Sci. Eng. C 2015, 48, 586–591. [Google Scholar] [CrossRef]
- Li, T.T.; Lou, C.W.; Huang, C.H.; Huang, C.L.; Lin, J.H. Thermoplastic polyurethanes/polyester/polypropylene composites: Effect of thermoplastic polyurethanes honeycomb structure on acoustic-absorbing and cushioning property. J. Ind. Text. 2016, 46, 578–595. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, K.; Hu, S.; Liu, Q.; Zhao, X.; Liu, Y. Improved cell morphology and reduced shrinkage ratio of ETPU beads by reactive blending. Polym. Test. 2017, 63, 38–46. [Google Scholar] [CrossRef]
- Wang, W.; Liao, X.; He, Y.; Li, J.; Jiang, Q.; Li, G. Thermoplastic polyurethane/polytetrafluoroethylene composite foams with enhanced mechanical properties and anti-shrinkage capability fabricated with supercritical carbon dioxide. J. Supercrit. Fluids 2000, 163, 104861. [Google Scholar] [CrossRef]
- Chen, Y.; Li, D.; Zhang, H.; Ling, Y.; Wu, K.; Liu, T.; Hu, D.; Zhao, L. Antishrinking strategy of microcellular thermoplastic polyurethane by comprehensive modeling analysis. Ind. Eng. Chem. Res. 2021, 60, 7155–7166. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, G.; Wang, M. Investigation of the effect of foaming process parameters on expanded thermoplastic polyurethane bead foams properties using response surface methodology. J. Appl. Polym. Sci. 2018, 135, 46327. [Google Scholar] [CrossRef]
- Cipriani, E.; Zanetti, M.; Brunella, V.; Costa, L.; Bracco, P. Thermoplastic polyurethanes with polycarbonate soft phase: Effect of thermal treatment on phase morphology. Polym. Degrad. Stab. 2012, 97, 1794–1800. [Google Scholar] [CrossRef]
- Frick, A.; Rochman, A. Characterization of TPU-elastomers by thermal analysis (DSC). Polym. Test. 2004, 23, 413–417. [Google Scholar] [CrossRef]
- Hossieny, N.J.; Barzegari, M.R.; Nofar, M.; Mahmood, S.H.; Park, C.B. Crystallization of hard segment domains with the presence of butane for microcellular thermoplastic polyurethane foams. Polymer 2014, 55, 651–662. [Google Scholar] [CrossRef]
- Li, R.; Lee, J.H.; Wang, C.; Mark, L.H.; Park, C.B. Solubility and diffusivity of CO2 and N2 in TPU and their effects on cell nucleation in batch foaming. J. Supercrit. Fluids 2019, 154, 104623. [Google Scholar] [CrossRef]
- Briscoe, B.; Zakaria, S. Gas-induced damage in elastomeric composites. J. Mater. Sci. 1990, 25, 3017–3023. [Google Scholar] [CrossRef]
- Primel, A.; Férec, J.; Ausias, G.; Tirel, Y.; Veillé, J.M.; Grohens, Y. Solubility and interfacial tension of thermoplastic polyurethane melt in supercritical carbon dioxide and nitrogen. J. Supercrit. Fluids 2017, 122, 52–57. [Google Scholar] [CrossRef]
Exp. No. | Psat (bar) | Tsat (°C) | Expansion Ratio (-) (a) | Cell Size (μm) | Cell Density (108 Cells/cm3) | Shrinking Ratio (%) |
---|---|---|---|---|---|---|
1 | 90 | 90 | 3.05 | 23.1 | 1.7 | 9.7 |
2 | 90 | 100 | 4.43 | 28.9 | 1.5 | 5.8 |
3 | 90 | 110 | 4.15 | 35.0 | 1.0 | −28.0 |
4 | 90 | 120 | 3.79 | 40.1 | 0.5 | −18.8 |
5 | 90 | 130 | 2.99 | 32.9 | 0.6 | −5.6 |
6 | 90 | 140 | 1.76 | 20.7 | 0.6 | 1.3 |
7 | 100 | 90 | 3.31 | 15.2 | 6.5 | 11.4 |
8 | 100 | 100 | 4.19 | 19.2 | 5.3 | 3.1 |
9 | 100 | 110 | 4.10 | 23.2 | 2.0 | −25.7 |
10 | 100 | 120 | 3.43 | 29.4 | 1.2 | −2.7 |
11 | 100 | 130 | 3.40 | 21.6 | 2.9 | 1.3 |
12 | 100 | 140 | 2.02 | 17.1 | 2.2 | −3.6 |
13 | 110 | 90 | 3.27 | 12.4 | 13.0 | 13.4 |
14 | 110 | 100 | 4.06 | 16.5 | 7.9 | 13.7 |
15 | 110 | 110 | 3.75 | 16.6 | 6.9 | −9.6 |
16 | 110 | 120 | 3.29 | 23.2 | 2.1 | −4.9 |
17 | 110 | 130 | 3.06 | 19.3 | 3.8 | 0.5 |
18 | 110 | 140 | 2.79 | 13.1 | 6.2 | −0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, Y.-T.; Hsieh, C.-M.; Yang, T.-M.; Su, C.-S. Preparation of Microcellular Foams by Supercritical Carbon Dioxide: A Case Study of Thermoplastic Polyurethane 70A. Processes 2021, 9, 1650. https://doi.org/10.3390/pr9091650
Hsiao Y-T, Hsieh C-M, Yang T-M, Su C-S. Preparation of Microcellular Foams by Supercritical Carbon Dioxide: A Case Study of Thermoplastic Polyurethane 70A. Processes. 2021; 9(9):1650. https://doi.org/10.3390/pr9091650
Chicago/Turabian StyleHsiao, Yu-Ting, Chieh-Ming Hsieh, Tsung-Mao Yang, and Chie-Shaan Su. 2021. "Preparation of Microcellular Foams by Supercritical Carbon Dioxide: A Case Study of Thermoplastic Polyurethane 70A" Processes 9, no. 9: 1650. https://doi.org/10.3390/pr9091650
APA StyleHsiao, Y.-T., Hsieh, C.-M., Yang, T.-M., & Su, C.-S. (2021). Preparation of Microcellular Foams by Supercritical Carbon Dioxide: A Case Study of Thermoplastic Polyurethane 70A. Processes, 9(9), 1650. https://doi.org/10.3390/pr9091650