Mathematical Simulation of Forest Fuel Pyrolysis in One-Dimensional Statement Taking into Account Soot Formation
Abstract
:1. Introduction
- (a)
- substances of mineral and soil origin (3–15% of the total mass of smoke emission) in the form of chemical oxides and salts of elements.
- (b)
- organic substances such as thermally decomposed biomass components (60–80% of the total smoke emission mass)
- (c)
- elemental carbon (7–15% of the total smoke emission mass)
2. Materials and Methods
- (1)
- One stage pyrolysis process is considered;
- (2)
- Brutto reaction with known thermokinetic parameters is used;
- (3)
- Arrhenius approach is used to describe pyrolysis process;
- (4)
- Thermophysical properties depend on temperature using effective characteristics;
- (5)
- The birch leaf has been considered as a three-layer plate;
- (6)
- The first and the third layers of this plate have been described as dry organic matter;
- (7)
- The second layer was a mixture of dry organic matter and water;
- (8)
- Moisture evaporation is described by the kinetic approach;
- (9)
- Water vapor instantaneously move to the area above the leaf;
- (10)
- Soot particle volume fraction is proportional to the volume fraction of dry organic matter decomposed during pyrolysis with coefficient of dispersion αs.
- (11)
- Temperature distribution is described by the unsteady heat conduction equation;
- (12)
- Modeling has been carried out as part of a one-dimensional formulation to satisfy requirements of memory and software performance for practical purposes.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baranovskiy, N.V.; Kuznetsov, G.V. Forest Fire Occurrences and Ecological Impact Prediction: Monograph; Publishing House of the Siberian Branch of the Russian Academy of Science: Novosibirsk, Russia, 2017. [Google Scholar] [CrossRef]
- Punsompong, P.; Pani, S.K.; Wang, S.-H.; Bich Pham, T.T. Assessment of forest fuel-burning types and transport over Thailand and the associated health risks. Atmos. Environ. 2021, 247, 118176. [Google Scholar] [CrossRef]
- Castagna, J.; Senatore, A.; Bencardino, M.; D’Amore, F.; Sprovieri, F.; Pirrone, N.; Mendicino, G. Multiscale assessment of the impact on air quality of an intense wildfire season in southern Italy. Sci. Total Environ. 2021, 761, 143271. [Google Scholar] [CrossRef]
- Adam, M.G.; Tran, P.T.M.; Bolan, N.; Balasubramanian, R. Forest fuel burning-derived airborne particulate matter in Southeast Asia: A critical review. J. Hazard. Mater. 2021, 407, 124760. [Google Scholar] [CrossRef] [PubMed]
- Yoshizue, M.; Taketani, F.; Adachi, K.; Iwamoto, Y.; Tohjima, Y.; Mori, T.; Miura, K. Detection of aerosol particles from siberian forest fuel burning over the western north pacific. Atmosphere 2020, 11, 1175. [Google Scholar] [CrossRef]
- Ryan, R.G.; Silver, J.D.; Schofield, R. Air quality and health impact of 2019–20 Black Summer megafires and COVID-19 lockdown in Melbourne and Sydney, Australia. Environ. Pollut. 2021, 274, 116498. [Google Scholar] [CrossRef] [PubMed]
- Augusto, S.; Ratola, N.; Tarín-Carrasco, P.; Jiménez-Guerrero, P.; Turco, M.; Schuhmacher, M.; Costa, S.; Teixeira, J.P.; Costa, C. Population exposure to particulate-matter and related mortality due to the Portuguese wildfires in October 2017 driven by storm Ophelia. Environ. Int. 2020, 144, 106056. [Google Scholar] [CrossRef]
- Invally, M.; Kaur, G.; Kaur, G.; Bhullar, S.K.; Buttar, H.S. Health care burden of cardiorespiratory diseases caused by particulate matter and chemical air pollutants. World Heart J. 2017, 9, 303–317. [Google Scholar]
- Borchers-Arriagada, N.; Palmer, A.J.; Bowman, D.M.J.S.; Williamson, G.J.; Johnston, F.H. Health impacts of ambient forest fuel smoke in Tasmania, Australia. Int. J. Environ. Res. Public Health 2020, 17, 3264. [Google Scholar] [CrossRef] [PubMed]
- Grishin, A.M. Mathematical Modeling of Forest Fire and New Methods of Fighting Them; Publishing House of the Tomsk State University: Tomsk, Russia, 1997; p. 390. [Google Scholar]
- Josephson, A.J.; Castaño, D.; Koo, E.; Linn, R.R. Zonal-Based Emission Source Term Model for Predicting Particulate Emission Factors in Wildfire Simulations. Fire Technol. 2021, 57, 943–971. [Google Scholar] [CrossRef]
- Sharma, A.; Pareek, V.; Zhang, D. Forest fuel pyrolysis—A review of modelling, process parameters and catalytic studies. Renew. Sustain. Energy Rev. 2015, 50, 1081–1096. [Google Scholar] [CrossRef]
- Wang, S.; Dai, G.; Yang, H.; Luo, Z. Lignocellulosic forest fuel pyrolysis mechanism: A state-of-the-art review. Prog. Energy Combust. Sci. 2017, 62, 33–86. [Google Scholar] [CrossRef]
- Di Blasi, C. Modeling chemical and physical processes of wood and forest fuel pyrolysis. Prog. Energy Combust. Sci. 2008, 34, 47–90. [Google Scholar] [CrossRef]
- Radmanesh, R.; Courbariaux, Y.; Chaouki, J.; Guy, C. A unified lumped approach in kinetic modeling of forest fuel pyrolysis. Fuel 2006, 85, 1211–1220. [Google Scholar] [CrossRef]
- Amutio, M.; Lopez, G.; Alvarez, J.; Moreira, R.; Duarte, G.; Nunes, J.; Olazar, M.; Bilbao, J. Pyrolysis kinetics of forestry residues from the Portuguese Central Inland Region. Chem. Eng. Res. Des. 2013, 91, 2682–2690. [Google Scholar] [CrossRef]
- Safdari, M.S.; Amini, E.; Weise, D.R.; Fletcher, T.H. Comparison of pyrolysis of live wildland fuels heated by radiation vs. convection. Fuel 2020, 268, 117342. [Google Scholar] [CrossRef]
- Safdari, M.S.; Rahmati, M.; Amini, E.; Howarth, J.E.; Berryhil, J.P.; Dietenberger, M.; Weise, D.R.; Fletcher, T.H. Characterization of pyrolysis products from fast pyrolysis of live and dead vegetation native to the Southern United States. Fuel 2018, 229, 151–166. [Google Scholar] [CrossRef]
- Anca-Couce, A.; Zobel, N.; Berger, A.; Behrendt, F. Smouldering of pine wood: Kinetics and reaction heats. Combust. Flame 2012, 159, 1708–1719. [Google Scholar] [CrossRef]
- Benkorichi, S.; Fateh, T.; Richard, F.; Consalvi, J.-L.; Nadjai, A. Investigation of thermal degradation of pine needles using multi-step reaction mechanisms. Fire Saf. J. 2017, 91, 811–819. [Google Scholar] [CrossRef]
- Cancellieri, D.; Innocenti, E.; Leroy-Cancellieri, V. WinGPYRO: A software platform for kinetic study of forest fuels. Fire Saf. J. 2013, 58, 103–111. [Google Scholar] [CrossRef]
- Svenson, J.; Pettersson, J.B.C.; Davidsson, K.O. Fast pyrolysis of the main components of birch wood. Combust. Sci. Technol. 2004, 176, 977–990. [Google Scholar] [CrossRef]
- Engstrom, J.D.; Butler, J.K.; Smith, S.G.; Baxter, L.L.; Fletcher, T.H.; Weise, D.R. Ignition behavior of live California chaparral leaves. Combust. Sci. Technol. 2004, 176, 1577–1591. [Google Scholar] [CrossRef]
- McAllister, S.; Grenfell, I.; Hadlow, A.; Jolly, W.M.; Finney, M.; Cohen, J. Piloted ignition of live forest fuels. Fire Saf. J. 2012, 51, 133–142. [Google Scholar] [CrossRef]
- Jolly, W.M.; Parsons, R.A.; Hadlow, A.M.; Cohn, G.M.; McAllister, S.S.; Popp, J.B.; Hubbard, R.M.; Negron, J.F. Relationships between moisture, chemistry, and ignition of Pinus contorta needles during the early stages of mountain pine beetle attack. For. Ecol. Manag. 2012, 269, 52–59. [Google Scholar] [CrossRef]
- McAllister, S.; Finney, M. Convection Ignition of Live Forest Fuels. Fire Saf. Sci. 2014, 11, 1312–1325. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, T.H.; Pickett, B.M.; Smith, S.G.; Spittle, G.S.; Woodhouse, M.M.; Haake, E.; Weise, D.R. Effects of Moisture on Ignition Behavior of Moist California Chaparral and Utah Leaves. Combust. Sci. Technol. 2007, 179, 1183–1203. [Google Scholar] [CrossRef] [Green Version]
- Pickett, B.M.; Isackson, C.; Wunder, R.; Fletcher, T.H.; Butler, B.W.; Weise, D.R. Experimental measurements during combustion of moist individual foliage samples. Int. J. Wildland Fire 2010, 19, 153–162. [Google Scholar] [CrossRef]
- Mindykowski, P.; Fuentes, A.; Consalvi, J.L.; Porterie, B. Piloted ignition of wildland fuels. Fire Saf. J. 2011, 46, 34–40. [Google Scholar] [CrossRef]
- Reszka, P.; Cruz, J.J.; Valdivia, J.; Gonzalez, F.; Rivera, J.; Carvajal, C.; Fuentes, A. Ignition delay times of live and dead pinus radiata needles. Fire Saf. J. 2020, 112, 102948. [Google Scholar] [CrossRef]
- Borujerdi, P.; Shotorban, B.; Mahalingam, S. A computational study of burning of vertically oriented leaves with various fuel moisture contents by upward convective heating. Fuel 2020, 276, 118030. [Google Scholar] [CrossRef]
- Gallacher, J.R.; Lansinger, V.; Hansen, S.; Jack, D.; Weise, D.R.; Fletcher, T.H. Effects of season and heating mode on ignition and burning behavior of three species of live fuel measured in a flatflame burner system. In Proceedings of the Western States Section of the Combustion Institute Spring Technical Meeting, Tulsa, OK, USA, 16–18 March 2014; pp. 530–543. [Google Scholar]
- Borujerdi, P.R.; Shotorban, B. Pyrolysis and Combustion Characteristics of Leaf-like Fuel under Convection and Radiation Heating. Combust. Sci. Technol. 2021, 1–23. [Google Scholar] [CrossRef]
- Qingmin, M.; Xiaoping, C.; Daoyin, L. Numerical simulation of pyrolysis of a wood particle. Proc. CSEE 2012, 32, 61–66. [Google Scholar]
- Li, X.; Yin, C.; Knudsen Kær, S.; Condra, T. A detailed pyrolysis model for a thermally large biomass particle. Fuel 2020, 278, 118397. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, C.; Lu, S. Modeling the pyrolysis of wet wood using FireFOAM. Energy Convers. Manag. 2015, 98, 500–506. [Google Scholar] [CrossRef]
- Hostikka, S.; Matala, A. Pyrolysis model for predicting the heat release rate of birch wood. Combust. Sci. Technol. 2017, 189, 1373–1393. [Google Scholar] [CrossRef]
- Kukhar, I.V.; Orlovskiy, S.N.; Martynovsakaya, S.N. Forest fires environmental impact study. IOP Conf. Ser. Earth Environ. Sci. 2020, 548, 052061. [Google Scholar] [CrossRef]
- Samsonov, Y.N.; Ivanov, V.A.; McRae, D.J.; Baker, S.P. Chemical and dispersal characteristics of particulate emissions from forest fires in Siberia. Int. J. Wildland Fire 2012, 21, 818–827. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A review of forest fuel burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [Green Version]
- Simoneit, B.R. Forest fuel burning—A review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 2002, 17, 129–162. [Google Scholar] [CrossRef]
- Makarov, V.I.; Popova, S.A.; Dubtsov, S.N.; Plohotnichenko, M.E. Spectrum of sizes and chemical composition of smoke emission under UV irradiation in the mode of smoldering combustion of forest materials. Interexpo Geo-Sib. 2018, 4, 196–201. (In Russian) [Google Scholar]
- Barboni, T.; Leonelli, L.; Santoni, P.-A.; Tihay-Felicelli, V. Aerosols and carbonaceous and nitrogenous compounds emitted during the combustion of dead shrubs according to twigs’ diameter and combustion phases. Fire Saf. J. 2020, 113, 102988. [Google Scholar] [CrossRef]
- Aseeva, R.M.; Than, B.D.; Serkov, B.B.; Sivenkov, A.B. The release of smoke during thermal decomposition and combustion of wood. Leśn. Vestn. 2004, 2, 99–103. (In Russian) [Google Scholar]
- Guo, L.; Ma, Y.; Tigabu, M.; Guo, X.; Zheng, W.; Guo, F. Emission of atmospheric pollutants during forest fire in boreal region of China. Environ. Pollut. 2020, 264, 114709. [Google Scholar] [CrossRef]
- Urbanski, S. Wildland fire emissions, carbon, and climate: Emission factors. For. Ecol. Manag. 2014, 317, 51–60. [Google Scholar] [CrossRef]
- Kulacki, F.A.; Acharya, S.; Chudnovsky, Y.; Cotta, R.M.; Devireddy, R.; Dhir, V.K.; Mengüç, M.P.; Mostaghimi, J.; Vafai, K. Handbook of Thermal Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2018; p. 3043. [Google Scholar]
- Samarskii, A.A. The Theory of Difference Schemes; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 2001; p. 761. [Google Scholar]
- Samarskii, A.A.; Vabishchevich, P.N. Computational Heat Transfer, 1: Mathematical Modelling; Wiley: Chichester, UK, 1995. [Google Scholar]
- Samarskii, A.A.; Vabishchevich, P.N. Computational Heat Transfer, 2: The Finite Difference Method; Wiley: Chichester, UK, 1995. [Google Scholar]
- Grishin, A.M. Conjugated problems of heat and mass exchange and the physico-mathematical theory of forest fires. Inzhenerno-Fizz Zhurnal 2001, 74, 48–52. [Google Scholar]
- Baranovskiy, N.V.; Kirienko, V.A. Mathematical simulation of heat and mass transfer during forest fuel pyrolysis caused by high temperature from crown forest fire. Int. Rev. Model. Simul. 2020, 13, 223–233. [Google Scholar] [CrossRef]
- Korobeinichev, O.P.; Paletsky, A.A.; Gonchikzhapov, M.B.; Shundrina, I.K.; Chen, H.; Liu, N. Combustion chemistry and decomposition kinetics of forest fuels. Procedia Eng. 2013, 62, 182–193. [Google Scholar] [CrossRef] [Green Version]
- Larikova, Y.S.; Kondrat’ev, M.N. Physiology of Woody Plants; BIBCOM: Moscow, Russia, 2017; p. 230. (In Russian) [Google Scholar]
- Baranovskiy, N.V. Mathematical Modeling of the Most Probable Scenarios and Conditions for the Occurrence of Forest Fires. Ph.D. Thesis, Tomsk State University, Tomsk, Russia, 2007; 153p. (In Russian). [Google Scholar]
- Baranovskiy, N.; Malinin, A. Mathematical simulation of forest fire impact on industrial facilities and wood-based buildings. Sustainability 2020, 12, 5475. [Google Scholar] [CrossRef]
- Baranovskiy, N.; Demikhova, A. Mathematical modeling of heat transfer in an element of combustible plant material when exposed to radiation from a forest fire. Safety 2019, 5, 56. [Google Scholar] [CrossRef] [Green Version]
- Podolskaya, A.S.; Ershov, D.V.; Shulyak, P.P. Application of the method for assessing the probability of forest fires in ISDM-Rosleskhoz. Mod. Probl. Remote Sens. Earth Space 2011, 8, 118–126. (In Russian) [Google Scholar]
- Grishin, A.M.; Dolgov, A.A.; Zima, V.P.; Subbotin, A.N.; Tsvyk, R.S.H. Experimental and theoretical investigation of the effect of radiation and combined heat transfer on initiation and spread of ground forest fires. Heat Transf. Res. 2002, 33, 502–514. [Google Scholar] [CrossRef]
- Perminov, V.A.; Marzaeva, V.I. Mathematical Modeling of Crown Forest Fire Spread in the Presence of Fire Breaks and Barriers of Finite Size. Combust. Explos. Shock Waves 2020, 56, 332–343. [Google Scholar] [CrossRef]
- Strokatov, A.A. Physical Modeling of Fire and Heat Tornadoes. Ph.D. Thesis, Tomsk State University, Tomsk, Russia, 2007; 20p. (In Russian). [Google Scholar]
- Grishin, A.M.; Golovanov, A.N.; Kolesnikov, A.A.; Strokatov, A.A.; Tsvyk, R.S. Experimental investigation of the thermal and fire tornadoes. Dokl. Akad. Nauk 2005, 400, 618–620. [Google Scholar]
- Stavrova, N.I.; Gorshkov, V.V.; Katjutin, P.N.; Bakkal, I.J. The structure of northern siberian spruce-scots pine forests at different stages of post-fire succession. Forests 2020, 11, 558. [Google Scholar] [CrossRef]
- Baranovskiy, N.V.; Zakharevich, A.V. Experimental investigation of processes of typical forest fuel ignition by a high-temperature steel particle. Heat Transf. Res. 2016, 47, 681–689. [Google Scholar] [CrossRef]
- GIS Meteo. Available online: https://www.gismeteo.ru/diary/4804/ (accessed on 28 February 2021).
- Badmaev, N.; Bazarov, A. Correlation analysis of terrestrial and satellite meteodata in the territory of the Republic of Buryatia (Eastern Siberia, Russian Federation) with forest fire statistics. Agric. For. Meteorol. 2021, 297, 108245. [Google Scholar] [CrossRef]
- Badmaev, N.B.; Bazarov, A.V.; Sychev, R.S. Forest Fire Danger Assessment Using Meteorological Trends: Case Study. In Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks; Baranovskiy, N.V., Ed.; IGI Global: Hershey, PA, USA, 2020; pp. 183–208. [Google Scholar] [CrossRef]
- Yankovich, E.P.; Yankovich, K.S.; Baranovskiy, N.V.; Bazarov, A.V.; Sychev, R.S.; Badmaev, N.B. Mapping of vegetation cover using Sentinel-2 to estimate forest fire danger. Proc. SPIE—Int. Soc. Opt. Eng. 2019, 11152, 1115216. [Google Scholar] [CrossRef]
- Komarov, K.L.; Kachinsky, V.A. Modeling of emergency response processes on railway transport. Transp. Ural. 2011, 2, 25–30. (In Russian) [Google Scholar]
- Grunstra, M.R.; Martell, D.L. A history of railway fires in Ontario’s forests. For. Chron. 2014, 90, 314–320. [Google Scholar] [CrossRef] [Green Version]
- Baranovskiy, N.V. Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks; IGI Global: Hershey, PA, USA, 2020. [Google Scholar] [CrossRef]
- Zharikova, M.V. Dynamic Spatial-Distributed Fire Risk Analysis. In Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks; Baranovskiy, N.V., Ed.; IGI Global: Hershey, PA, USA, 2020; pp. 101–120. [Google Scholar] [CrossRef]
- Yankovich, E.P.; Yankovich, K.S. Dynamic of coniferous forests areas in Baikal Region by classification of Landsat time series. Proc. SPIE Int. Soc. Opt. Eng. 2020, 11534, 1153414. [Google Scholar] [CrossRef]
- RAD Studio. Available online: https://www.embarcadero.com/ru/ (accessed on 28 February 2021).
- Yankovich, K.S.; Yankovich, E.P.; Baranovskiy, N.V. Classification of Vegetation to Estimate Forest Fire Danger Using Landsat 8 Images: Case Study. Math. Probl. Eng. 2019, 2019, 6296417. [Google Scholar] [CrossRef]
- Müller, M.M.; Vilà-Vilardell, L.; Vacik, H. Towards an integrated forest fire danger assessment system for the European Alps. Ecol. Inform. 2020, 60, 101151. [Google Scholar] [CrossRef]
- Bentekhici, N.; Bellal, S.-A.; Zegrar, A. Contribution of remote sensing and GIS to mapping the fire risk of Mediterranean forest case of the forest massif of Tlemcen (North-West Algeria). Nat. Hazards 2020, 104, 811–831. [Google Scholar] [CrossRef]
- ArcGIS Online. Available online: https://www.arcgis.com/index.html (accessed on 28 February 2021).
- QGIS Project. Available online: https://qgis.org/ru/site/ (accessed on 28 February 2021).
- Pasko, O.A.; Kovyavin, V.F.; Lebedeva, N.A. The Influence of Fires on Forest Ecosystems. In Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks; Baranovskiy, N.V., Ed.; IGI Global: Hershey, PA, USA, 2020; pp. 345–366. [Google Scholar] [CrossRef]
- Cantu, M. Object Pascal Handbook; Embarcadero Technologies: Piacenza, Italy, 2020; p. 773. [Google Scholar]
- Baranovskiy, N.V. Forest fire danger assessment using SPMD-model of computation for massive parallel system. Int. Rev. Model. Simul. 2017, 10, 193–201. [Google Scholar] [CrossRef]
- Cyberia Supercomputer. Available online: https://cyberia.tsu.ru/ (accessed on 28 February 2021).
- Research Computing Center. Lomonosov Moscow State University. Available online: https://rcc.msu.ru/en (accessed on 28 February 2021).
Scenario | Tff | T0 | αs | tend | αe | λ | ρ | c | φ30 |
---|---|---|---|---|---|---|---|---|---|
Forest fire type | + | + | |||||||
Season | + | ||||||||
Forest fuel type | + | + | + | ||||||
Moisture content | + | ||||||||
Smoke generation | + | ||||||||
Duration | + |
Fire Type | Low-Intensity Surface Forest Fire (900 K) | High-Intensity Forest Fire (1000 K) | Crown Forest Fire (1100 K) | Fire Storm (1200 K) |
---|---|---|---|---|
Season: | spring (April +6 °C), summer (July +20 °C), autumn (October 0 °C) | |||
Duration of forest fire front impact: | 2, 3, 5 s | |||
Soot generation: | αs = 0.01; 0.03; 0.05 | |||
Volume fraction of moisture: | 0.2; 0.3; 0.4 | |||
Volume fraction of dry organic matter: | 0.8; 0.7; 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranovskiy, N.; Kirienko, V. Mathematical Simulation of Forest Fuel Pyrolysis in One-Dimensional Statement Taking into Account Soot Formation. Processes 2021, 9, 1616. https://doi.org/10.3390/pr9091616
Baranovskiy N, Kirienko V. Mathematical Simulation of Forest Fuel Pyrolysis in One-Dimensional Statement Taking into Account Soot Formation. Processes. 2021; 9(9):1616. https://doi.org/10.3390/pr9091616
Chicago/Turabian StyleBaranovskiy, Nikolay, and Viktoriya Kirienko. 2021. "Mathematical Simulation of Forest Fuel Pyrolysis in One-Dimensional Statement Taking into Account Soot Formation" Processes 9, no. 9: 1616. https://doi.org/10.3390/pr9091616
APA StyleBaranovskiy, N., & Kirienko, V. (2021). Mathematical Simulation of Forest Fuel Pyrolysis in One-Dimensional Statement Taking into Account Soot Formation. Processes, 9(9), 1616. https://doi.org/10.3390/pr9091616