Mining Industry Impact on Environmental Sustainability, Economic Growth, Social Interaction, and Public Health: An Application of Semi-Quantitative Mathematical Approach
Abstract
:1. Introduction
2. Study Background
2.1. Coal Mining and Atmosphere
2.2. Coal Mining Impact on Biosphere
2.3. Coal Mining Impact on Hydrosphere
2.4. Coal Mining Impact on Lithosphere
2.5. Human Needs and Interest and Coal Mining
2.5.1. Health and Safety of Human
2.5.2. Social Interaction and Quality of Life
3. Materials and Methods
3.1. Site Description
3.2. Methodology
3.2.1. Folchi Method
3.2.2. Phillips Environmental Sustainability Mathematics (PESM) Model
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohara, T.; Akimoto, H.; Kurokawa, J.; Horii, N.; Yamaji, K.; Yan, X.; Hayasaka, T. An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos. Chem. Phys. 2007, 7, 4419–4444. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Wang, Q.; Zhang, X.; Qian, Y.; Qian, X. China’s black carbon emission from fossil fuel consumption in 2015, 2020, and 2030. Atmos. Environ. 2019, 212, 201–207. [Google Scholar] [CrossRef]
- Lin, B.; Raza, M.Y. Coal and economic development in Pakistan: A necessity of energy source. Energy 2020, 207, 118244. [Google Scholar] [CrossRef]
- Kousar, S.; Rehman, A.; Zafar, M.; Ali, K.; Nasir, N. China-Pakistan Economic Corridor: A gateway to sustainable economic development. Int. J. Soc. Econ. 2018, 45, 909–924. [Google Scholar] [CrossRef]
- Farooqui, M.A.; Aftab, S.M. China-Pakistan Economic Corridor; Prospects and Challenges for Balochistan, Pakistan. IOP Conf. Ser. Mater. Sci. Eng. 2018, 414, 012046. [Google Scholar] [CrossRef] [Green Version]
- Skoczkowski, T.; Bielecki, S.; Kochański, M.; Korczak, K. Climate-change induced uncertainties, risks and opportunities for the coal-based region of Silesia: Stakeholders’ perspectives. Environ. Innov. Soc. Transit. 2020, 35, 460–481. [Google Scholar] [CrossRef]
- Watts, J. We Have 12 Years to Limit Climate Change Catastrophe, Warns UN. The Guardian. 2018, p. 8. Available online: https://www.theguardian.com/environment/2018/oct/08/global-warming-must-not-exceed-15c-warns-landmark-un-report (accessed on 16 November 2020).
- Burke, A.; Fishel, S. A coal elimination treaty 2030: Fast tracking climate change mitigation, global health and security. Earth Syst. Gov. 2020, 3, 100046. [Google Scholar] [CrossRef]
- Sohoo, I.; Ritzkowski, M.; Kuchta, K.; Cinar, S.Ö. Environmental Sustainability Enhancement of Waste Disposal Sites in Developing Countries through Controlling Greenhouse Gas Emissions. Sustainability 2020, 13, 151. [Google Scholar] [CrossRef]
- Rashid, M.I.; Benhelal, E.; Rafiq, S. Reduction of greenhouse gas emissions from gas, oil, and coal power plants in Pakistan by carbon capture and storage (CCS): A Review. Chem. Eng. Technol. 2020, 43, 2140–2148. [Google Scholar] [CrossRef]
- Shen, M.; Huang, W.; Chen, M.; Song, B.; Zeng, G.; Zhang, Y. (Micro) plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. J. Clean. Prod. 2020, 254, 120138. [Google Scholar] [CrossRef]
- Mohsin, M.; Naseem, S.; Zia-ur-Rehman, M.; Baig, S.A.; Salamat, S. The crypto-trade volume, GDP, energy use, and environmental degradation sustainability: An analysis of the top 20 crypto-trader countries. Int. J. Financ. Econ. 2020. [Google Scholar] [CrossRef]
- Sarfraz, M.; Mohsin, M.; Naseem, S.; Kumar, A. Modeling the relationship between carbon emissions and environmental sustainability during COVID-19: A new evidence from asymmetric ARDL cointegration approach. Environ. Dev. Sustain. 2021, 1–19. [Google Scholar] [CrossRef]
- Ghose, M.K.; Majee, S.R. Assessment of the impact on the air environment due to opencast coal mining—An Indian case study. Atmos. Environ. 2000, 34, 2791–2796. [Google Scholar] [CrossRef]
- Ahmad, A.; Hakimi, M.H.; Chaudhry, M.N. Geochemical and organic petrographic characteristics of low-rank coals from Thar coalfield in the Sindh Province, Pakistan. Arab. J. Geosci. 2014, 8, 5023–5038. [Google Scholar] [CrossRef]
- Sanjrani, M.A.; Memon, I.H.; Awan, B.A. Environmental Impact of Lakhra Coal Mining, Sindh province, Pakistan. N. Am. Acad. Res. 2018, 1, 72–75. [Google Scholar]
- Cao, C.; Chen, X.-P.; Ma, Z.-B.; Jia, H.-H.; Wang, J.-J. Greenhouse cultivation mitigates metal-ingestion-associated health risks from vegetables in wastewater-irrigated agroecosystems. Sci. Total. Environ. 2016, 560–561, 204–211. [Google Scholar] [CrossRef]
- Hussain, M.; Muhammad, S.; Malik, R.N.; Khan, M.U.; Farooq, U. Status of heavy metal residues in fish species of Pakistan. Rev. Environ. Contam. Toxicol. Vol. 2014, 230, 111–132. [Google Scholar] [CrossRef]
- Obiora, S.C.; Chukwu, A.; Davies, T.C. Heavy metals and health risk assessment of arable soils and food crops around Pb–Zn mining localities in Enyigba, southeastern Nigeria. J. Afr. Earth Sci. 2016, 116, 182–189. [Google Scholar] [CrossRef]
- Zheng, N.; Wang, Q.; Zhang, X.; Zheng, D.; Zhang, Z.; Zhang, S. Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city, China. Sci. Total. Environ. 2007, 387, 96–104. [Google Scholar] [CrossRef]
- Khan, A.A.; Khan, W.A.; Chaudhry, A.A. Mammalian diversity in thar desert habitat of tharparkar district, Sindh, Pakistan. Pak. J. Zool. 2015, 47, 1205–1211. [Google Scholar]
- Masih, A. Thar Coalfield: Sustainable Development and an Open Sesame to the energy security of Pakistan. J. Phys. Conf. Ser. 2018, 989, 012004. [Google Scholar] [CrossRef]
- Ansari, K.A.; Mahar, A.R.; Malik, A.R.; Sirohi, M.H.; Saand, M.A.; Simair, A.A.; Mirbahar, A.A. Impact of grazing on plant biodiversity of desert area of district Khairpur, Sindh, Pakistan. J. Anim. Plant Sci. 2017, 27, 1931–1940. [Google Scholar]
- Zaigham, N.A.; Ahmad, M.; Hisam, N. Thar rift and its significance for hydrocarbons. In Pakistan Association of Petroleum Geoscientists (PAPG), Islamabad Google Scholar; Pakistan Association of Petroleum Geoscientists: Islamabad, Pakistan, 2000. [Google Scholar]
- Zaigham, N.A.; Nayyar, Z.A. Renewable hot dry rock geothermal energy source and its potential in Pakistan. Renew. Sustain. Energy Rev. 2010, 14, 1124–1129. [Google Scholar] [CrossRef]
- Phuong, T.T.; Shrestha, R.P.; Chuong, H.V. Simulation of soil erosion risk in the upstream area of Bo River watershed. In Redefining Diversity & Dynamics of Natural Resources Management in Asia; Elsevier: Amsterdam, The Netherlands, 2017; Volume 3, pp. 87–99. [Google Scholar]
- Dondini, M.; Abdalla, M.; Aini, F.K.; Albanito, F.; Beckert, M.R.; Begum, K.; Brand, A.; Cheng, K.; Comeau, L.-P.; Jones, E.O. Projecting soil C under future climate and land-use scenarios (modeling). In Soil Carbon Storage; Elsevier: Amsterdam, The Netherlands, 2018; pp. 281–309. [Google Scholar]
- Widanarko, B.; Legg, S.; Stevenson, M.; Devereux, J.; Jones, G. Prevalence of low back symptoms and its consequences in relation to occupational group. Am. J. Ind. Med. 2013, 56, 576–589. [Google Scholar] [CrossRef]
- Vearrier, D.; Greenberg, M.I. Occupational health of miners at altitude: Adverse health effects, toxic exposures, pre-placement screening, acclimatization, and worker surveillance. Clin. Toxicol. 2011, 49, 629–640. [Google Scholar] [CrossRef]
- Viljoen, D.A.; Nie, V.; Guest, M. Is there a risk to safety when working in the New South Wales underground coal-mining industry while having binaural noise-induced hearing loss? Intern. Med. J. 2006, 36, 180–184. [Google Scholar] [CrossRef]
- Md-Nor, Z.; Kecojevic, V.; Komljenovic, D.; Groves, W. Risk assessment for loader-and dozer-related fatal incidents in US mining. Int. J. Inj. Contr. Saf. Promot. 2008, 15, 65–75. [Google Scholar] [CrossRef]
- Paul, P.S.; Maiti, J. The role of behavioral factors on safety management in underground mines. Saf. Sci. 2007, 45, 449–471. [Google Scholar] [CrossRef]
- Panhwar, S.; Mahar, R.B.; Abro, A.A.; Ijaz, M.W.; Solangi, G.S.; Muqeet, M. Health and safety assessment in Lakhra coal mines and its mitigation measures. Iran. J. Heal. Saf. Environ. 2017, 4, 775–780. [Google Scholar]
- Brnich, M.J.; Kowalski-Trakofler, K.M.; Brune, J. Underground Coal Mine Disasters 1900–2010: Events, Responses, and a Look to the Future. Extr. Sci. Century Min. Res. 2010, 363. Available online: https://www.cdc.gov/NIOSH/Mining/UserFiles/works/pdfs/ucmdn.pdf (accessed on 26 December 2020).
- Grayson, R.L.; Kinilakodi, H.; Kecojevic, V. Pilot sample risk analysis for underground coal mine fires and explosions using MSHA citation data. Saf. Sci. 2009, 47, 1371–1378. [Google Scholar] [CrossRef]
- Naseem, S.; Fu, G.L.; Mohsin, M.; Rehman, M.Z.; Baig, S.A. Semi-Quantitative Environmental Impact Assessment of Khewra Salt Mine of Pakistan: An Application of Mathematical Approach of Environmental Sustainability. Min. Met. Explor. 2020, 37, 1–12. [Google Scholar] [CrossRef]
- Phillips, J. Applying a mathematical model of sustainability to the Rapid Impact Assessment Matrix evaluation of the coal mining tailings dumps in the Jiului Valley, Romania. Resour. Conserv. Recycl. 2012, 63, 17–25. [Google Scholar] [CrossRef]
- Folchi, R. Environmental impact statement for mining with explosives: A quantitative method. Proc. Annu. Conf. Explos. Blasting Tech. 2003, 2, 285–296. [Google Scholar]
- Phillips, J. Using a mathematical model to assess the sustainability of proposed bauxite mining in Andhra Pradesh, India from a quantitative-based environmental impact assessment. Environ. Earth Sci. 2012, 67, 1587–1603. [Google Scholar] [CrossRef]
- Phillips, J. A mathematical model of sustainable development using ideas of coupled environment-human systems (Invited Article). Pelican Web J. Sustain. Dev. 2010, 6, 127–142. [Google Scholar]
- Kholod, N.; Evans, M.; Pilcher, R.C.; Roshchanka, V.; Ruiz, F.; Coté, M.; Collings, R. Global methane emissions from coal mining to continue growing even with declining coal production. J. Clean. Prod. 2020, 256, 120489. [Google Scholar] [CrossRef]
- Oei, P.-Y.; Brauers, H.; Herpich, P. Lessons from Germany’s hard coal mining phase-out: Policies and transition from 1950 to 2018. Clim. Policy 2019, 20, 963–979. [Google Scholar] [CrossRef] [Green Version]
- Jakob, M.; Steckel, J.C.; Jotzo, F.; Sovacool, B.K.; Cornelsen, L.; Chandra, R.; Edenhofer, O.; Holden, C.; Löschel, A.; Nace, T.; et al. The future of coal in a carbon-constrained climate. Nat. Clim. Chang. 2020, 10, 704–707. [Google Scholar] [CrossRef]
- Azapagic, A. Developing a framework for sustainable development indicators for the mining and minerals industry. J. Clean. Prod. 2004, 12, 639–662. [Google Scholar] [CrossRef]
- Rawat, N.S. A study of physicochemical characteristics of respirable dust in an Indian coal mine. Sci. Total Environ. 1982, 23, 47–54. [Google Scholar] [CrossRef]
- Tiwary, R.K. Environmental impact of coal mining on water regime and its management. Water Air Soil Pollut. 2001, 132, 185–199. [Google Scholar] [CrossRef]
Sr. No. | Coal Mining Environment | Coal Mining Impacting Factors |
---|---|---|
1 | Health and safety of human | Land dispossession and potential resources |
2 | Social interaction and quality of life | Exposition, visibility of the pit |
3 | Water pollution | Above-ground water pollution/depletion |
4 | Air pollution | Underground water pollution/depletion |
5 | Soil Erosion | Increase in vehicular traffic |
6 | Biodiversity loss | Atmospheric release of gas and coal dust |
7 | Above-ground interferences | Mine tailing spills |
8 | Underground interferences | Level of noise |
9 | Aesthetic degradation | Vibration of ground |
10 | Noise pollution | The livelihood of the local workforce |
11 | Economy | Contribution in GDP |
Impacting Factors | Scenario | Magnitude |
---|---|---|
Land dispossession and potential resources | Parks, protected areas | 8–10 |
Urban/rural area | 6–8 | |
wildlife, agro-diversity | 3–6 | |
Industrial area | 1–3 | |
Exposition, visibility of the pit | Can be seen from inhabited areas | 6–10 |
Can be seen from the main roads | 2–6 | |
Not visible | 1–2 | |
Underground water pollution/depletion | Interference with lakes and rivers | 6–10 |
Interferences with the non-relevant water system | 3–6 | |
No interference | 1–3 | |
Above-ground water pollution/depletion | Surface water pollution/Decreasing water (physicochemical, biological) quality | 5–10 |
Water table deep and permeable grounds | 2–5 | |
Water table deep and unpermeable grounds | 1–2 | |
Increase in vehicular traffic | Increase of 200% | 6–10 |
Increase of 100% | 3–6 | |
No interference | 1–3 | |
Atmospheric release of gas and coal dust | Free emissions in the atmosphere | 7–10 |
Emission around the given reference values | 2–7 | |
Emission well below the given reference values | 1–2 | |
Mine tailing spills | Toxic gases releasing during process | |
No blast design and no clearance procedures | 9–10 | |
Blast design and no clearance procedures | 4–9 | |
Blast design and clearance procedures | 1–4 | |
Level of noise | <141 db. | 8–10 |
<131 db. | 4–8 | |
<121 db. | 1–4 | |
Vibration of ground | Cosmetic damage, above threshold | 7–10 |
Tolerability threshold | 3–7 | |
The livelihood of local workforce | Values under tolerability threshold | 1–3 |
Job opportunities | ||
High | 7–10 | |
Medium | 3–6 | |
Low | 1–2 | |
Contribution in GDP | Level of GDP contribution | |
High | 7–10 | |
Medium | 3–6 | |
Low | 1–2 |
Impact Factors | Human Health and Safety | Social Interaction and Quality of Life | Water Pollution | Air Pollution | Soil Erosion | Biodiversity Loss | Above-Ground Interferences | Underground Interferences | Environmental Components | Noise Pollution | Economy |
---|---|---|---|---|---|---|---|---|---|---|---|
Land dispossession and potential resources | Med | Min | Nil | Nil | Max | Min | Nil | Nil | Aesthetic Degradation | Nil | Nil |
0.8 | 0.77 | 0 | 0 | 5.71 | 0.63 | 0 | 0 | 2.86 | 0 | 0 | |
Exposition, visibility of the pit | Nil | Min | Nil | Nil | Med | Nil | Nil | Nil | Max | Min | Nil |
0 | 0.77 | 0 | 0 | 2.86 | 0 | 0 | 0 | 2.86 | 2 | 0 | |
Above-ground water pollution/depletion | Max | Nil | Max | Nil | Nil | Max | Med | Nil | Max | Nil | Nil |
1.6 | 0 | 4.44 | 0 | 0 | 2.5 | 6.67 | 0 | 2.86 | 0 | 0 | |
Underground water pollution/depletion | Min | Nil | Max | Nil | Nil | Nil | Nil | Med | Nil | Nil | Nil |
0.4 | 0 | 4.44 | 0 | 0 | 0 | 0 | 6.67 | 0 | 0 | 0 | |
Increase in vehicular traffic | Max | Max | Nil | Nil | Min | Max | Nil | Nil | Min | Nil | Nil |
1.6 | 3.08 | 0 | 0 | 1.43 | 2.5 | 0 | 0 | 0.71 | 0 | 0 | |
Atmospheric release of gas and coal dust | Max | Min | Min | Max | Nil | Max | Min | Nil | Min | Nil | Nil |
1.6 | 0.77 | 1.11 | 10 | 0 | 2.5 | 3.33 | 0 | 0.71 | 0 | 0 | |
Mine tailing spills | Max | Nil | Nil | Nil | Nil | Med | Nil | Nil | Nil | Nil | Nil |
1.6 | 0 | 0 | 0 | 0 | 1.25 | 0 | 0 | 0 | 0 | 0 | |
Level of noise | Med | Max | Nil | Nil | Nil | Min | Nil | Nil | Nil | Max | Nil |
0.8 | 3.08 | 0 | 0 | 0 | 0.63 | 0 | 0 | 0 | 8 | 0 | |
Vibration of ground | Max | Med | Nil | Nil | Nil | Nil | Nil | Min | Nil | Nil | Nil |
1.6 | 1.54 | 0 | 0 | 0 | 0 | 0 | 3.33 | 0 | 0 | 0 | |
The livelihood of the local workforce | Nil | Nil | Nil | Nil | Nil | Nil | Nil | Nil | Nil | Nil | Max |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6.67 | |
Contribution in GDP | Nil | Nil | Nil | Nil | Nil | Nil | Nil | Nil | Nil | Nil | Min |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.33 | |
Total | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Environmental Components | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Human Health and Safety | Social Interaction and Quality of Life | Water Pollution | Air Pollution | Soil Erosion | Biodiversity Loss | Above-Ground Interferences | Underground Interferences | Aesthetic Degradation | Noise Pollution | Economy | |
Model’s Abbreviations | HNI1 | HNI2 | H | A1 | L1 | B1 | L2 | L3 | L4 | A2 | HNI3 |
Land dispossession and potential resources | 6.4 | 6.16 | 0 | 0 | 45.68 | 5.04 | 0 | 0 | 22.88 | 0 | 0 |
Exposition, visibility of the pit | 0 | 4.62 | 0 | 0 | 17.16 | 0 | 0 | 0 | 17.16 | 12 | 0 |
Above-ground water pollution/depletion | 12.8 | 0 | 35.52 | 0 | 0 | 20 | 53.36 | 0 | 22.88 | 0 | 0 |
Underground water pollution/depletion | 3.6 | 0 | 39.96 | 0 | 0 | 0 | 0 | 60.03 | 0 | 0 | 0 |
Increase in vehicular traffic | 14.4 | 27.72 | 0 | 0 | 12.87 | 22.5 | 0 | 0 | 6.39 | 0 | 0 |
Atmospheric release of gas and coal dust | 16 | 7.7 | 11.1 | 100 | 0 | 25 | 33.3 | 0 | 7.1 | 0 | 0 |
Mine tailing spills | 14.4 | 0 | 0 | 0 | 0 | 11.25 | 0 | 0 | 0 | 0 | 0 |
Level of Noise | 6.4 | 24.64 | 0 | 0 | 0 | 5.04 | 0 | 0 | 0 | 64 | 0 |
Vibration of ground | 12.8 | 12.32 | 0 | 0 | 0 | 0 | 0 | 26.64 | 0 | 0 | 0 |
Livelihood of local workforce | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33.35 |
Contribution in GDP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9.99 |
Total | 86.8 | 83.16 | 86.58 | 100 | 75.71 | 88.83 | 86.66 | 86.67 | 76.41 | 76 | 43.34 |
Components of Environment (E) | Maximum Possible Scores for E and HNI | |
---|---|---|
A1 | Air Pollution | A max = 2 × 100 = 200 |
A2 | Noise Pollution | |
B1 | Biodiversity Loss | B max = 1 × 100 = 100 |
H1 | Water Pollution | H max = 1 × 100 = 100 |
L1 | Soil Erosion | L max = 4 × 100 = 400 |
L2 | Above-Ground Interferences | |
L3 | Underground Interferences | |
L4 | Aesthetic Degradation | |
Components of HNI | ||
HNI1 | Human Health and Safety | HNI max = 3 × 100 = 300 |
HNI2 | Social Interaction and Quality of Life | |
HNI3 | Economy | |
Evaluation of Sustainability for Sindh Engro Coal Mining | ||
S = E − HNI |
Mine | E | HNI | S-Value | S-Level |
---|---|---|---|---|
Sindh Engro Coal Mining | 0.153925 | 0.7554 | −0.601475 | Strong |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohsin, M.; Zhu, Q.; Naseem, S.; Sarfraz, M.; Ivascu, L. Mining Industry Impact on Environmental Sustainability, Economic Growth, Social Interaction, and Public Health: An Application of Semi-Quantitative Mathematical Approach. Processes 2021, 9, 972. https://doi.org/10.3390/pr9060972
Mohsin M, Zhu Q, Naseem S, Sarfraz M, Ivascu L. Mining Industry Impact on Environmental Sustainability, Economic Growth, Social Interaction, and Public Health: An Application of Semi-Quantitative Mathematical Approach. Processes. 2021; 9(6):972. https://doi.org/10.3390/pr9060972
Chicago/Turabian StyleMohsin, Muhammad, Qiang Zhu, Sobia Naseem, Muddassar Sarfraz, and Larisa Ivascu. 2021. "Mining Industry Impact on Environmental Sustainability, Economic Growth, Social Interaction, and Public Health: An Application of Semi-Quantitative Mathematical Approach" Processes 9, no. 6: 972. https://doi.org/10.3390/pr9060972
APA StyleMohsin, M., Zhu, Q., Naseem, S., Sarfraz, M., & Ivascu, L. (2021). Mining Industry Impact on Environmental Sustainability, Economic Growth, Social Interaction, and Public Health: An Application of Semi-Quantitative Mathematical Approach. Processes, 9(6), 972. https://doi.org/10.3390/pr9060972