Unique Approach of a Telemedicine System for CBD-Infused Foods
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. SC-CO2 of Customized Food Materials
3.2. Constant Quantitative Discharge
3.3. Concept and Application of Telemedicine, Including CBD
3.4. Parameter Control for Quantitative Discharge
3.5. Vizo design (VD) to Keep Food Fresh
3.6. Web-Based IoT Control
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Ethics Statement
References
- Salami, S.A.; Martinelli, F.; Giovino, A.; Bachari, A.; Arad, N.; Mantri, N. It Is Our Turn to Get Cannabis High: Put Cannabinoids in Food and Health Baskets. Molecules 2020, 25, 4036. [Google Scholar] [CrossRef]
- Cerino, P.; Buonerba, C.; Cannazza, G.; D’Auria, J.; Ottoni, E.; Fulgione, A.; Di Stasio, A.; Pierri, B.; Gallo, A. A Review of Hemp as Food and Nutritional Supplement. Cannabis Cannabinoid Res. 2021, 6, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Tamba, B.I.; Stanciu, G.D.; Urîtu, C.M.; Rezus, E.; Stefanescu, R.; Mihai, C.T.; Luca, A.; Rusu-Zota, G.; Le-on-Constantin, M.M.; Cojocaru, E.; et al. Challenges and opportunities in preclinical research of synthetic cannabinoids for pain therapy. Medicine 2020, 56, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tocris Bioscience. Available online: https://www.tocris.com/products/minus-cannabidiol_1570#product-details (accessed on 1 November 2019).
- Fraguas-Sánchez, A.I.; Fernández-Carballido, A.; Martin-Sabroso, C.; Torres-Suárez, A.I. Stability characteristics of cannabidiol for the design of pharmacological, biochemical and pharmaceutical studies. J. Chromatogr B Anal. Technol Biomed. Life Sci. 2020, 1150, 122188. [Google Scholar] [CrossRef]
- Gaoni, Y.; Mechoulam, R. Hashish-VII: The isomerization of cannabidiol to tetrahydrocannabinol. Tetrahedron 1966, 22, 1481–1488. [Google Scholar] [CrossRef]
- Mechoulam, R.; Hanus, L. Cannabidiol: An overview of some chemical and pharmacological aspects. Part I: Chemical aspects. Chem. Phys. Lipids 2002, 121, 35–43. [Google Scholar] [CrossRef]
- Watanabe, K.; Itokawa, Y.; Yamaori, S.; Funahashi, T.; Kimura, T.; Kaji, T.; Usami, N.; Yamamoto, I. Conversion of cannabidiol to Δ9-tetrahydrocannabinol and related cannabinoids in artificial gastric juice, and their pharmacological effects in mice. Forensic Toxicol. 2007, 25, 16–21. [Google Scholar] [CrossRef]
- Bonn-Miller, M.O.; Banks, S.L.; Sebree, T. Conversion of Cannabidiol FollowingOral Administration: Authors’ Response to Grotenhermenetal. Cannabis Cannabinoid Res. 2017, 2, 5–7. [Google Scholar] [CrossRef] [Green Version]
- Kim, N. 3D Printed CBD Inclusive Object and Its Operation System. PCT/KR2020/007759, 20 May 2021. [Google Scholar]
- Consroe, P.; Laguna, J.; Allender, J.; Snider, S.; Stern, L.; Sandyk, R.; Kennedy, K.; Schram, K. Controlled clinical trial of cannabidiol in Huntington’s disease. Pharmacol. Biochem. Behav. 1991, 40, 701–708. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, W.; Yan, L.; Huang, D.; Lin, L.Y. Extrusion-Based Food Printing for Digitalized Food Design and Nutrition Control. J. Food Eng. 2018, 220, 1–11. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, M.; Bhandari, B. Recent Development in 3D Food Printing. Crit. Rev. Food Sci. Nutr. 2015, 57, 3145–3153. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Bhandari, B.; Yang, C. Impact of Rheological Properties of Mashed Potatoes on 3D printing. J. Food Eng. 2018, 220, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Tohic, C.L.; O’Sullivan, J.J.; Drapala, K.P.; Chartrin, V.; Chan, T.; Morrison, A.P.; Kerry, J.P.; Kelly, A.L. Effect of 3D printing on the Structure and Textural Properties of Processed Cheese. J. Food Eng. 2018, 220, 56–64. [Google Scholar] [CrossRef]
- Eo, J.S.; Cepeda, B.; Kim, J.H.; Kim, N.S. A New Paradigm of Pharmaceutical Drug Delivery Systems (DDS): Challenges for Distance, Time, and Shapes. Innov. Pharm. 2018, 9, 11–24. [Google Scholar]
- Cogan, P.S. Reality and Legality: Disentangling What Is Actual from What Is Tolerated in Comparisons of Hemp Extracts with Pure CBD. J. Diet. Suppl. 2020, 17, 1–16. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, J.H.; Cepeda, B.; Kim, N.S. Single Line Design Technique to Improve the Accuracy of Drug Delivery System: Piston Type Extrusion. In Proceedings of the International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 12–14 December 2018; pp. 709–714. [Google Scholar]
- Kim, N.P.; Cepeda, B.; Kim, J.; Yue, G.; Kim, S.; Kim, H. IoT Controlled Screw-Type 3D Food Printer Using Single Line Design Technique. In Proceedings of the International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 12–14 December 2018; pp. 978–983. [Google Scholar]
- Cafe Box Delight. Available online: https://www.cafeboxd.com (accessed on 1 September 2019).
- Kim, N.P.; Eo, J.S.; Cho, D. Optimization of Piston Type Extrusion (PTE) techniques for 3D Printed Food. J. Food Eng. 2018, 235, 41–49. [Google Scholar] [CrossRef]
- Taylor-Black, S.; Wang, J. Prevalence of Food Allergy in Urban Children. J. Allergy Clin. Immunol. 2012, 109, 431–437. [Google Scholar] [CrossRef]
- Kouzani, A.Z.; Adams, S.; Whyte, D.J.; Oliver, R.; Hemsley, B.; Palmer, S.; Balandin, S. 3D Printing of Food for People with Swallowing Difficulties. KnE Eng. 2017, 2, 23. [Google Scholar] [CrossRef]
- Octoprint. Available online: https://octoprint.org/ (accessed on 1 September 2019).
- Alvarado, C.; McKee, S. Marination to improve functional properties and safety of poultry meat. J. Appl. Poult. Res. 2007, 16, 113–120. [Google Scholar] [CrossRef]
- Ashraf-Khorassani, M.; Gidanian, S.; Yamini, Y. Effect of Pressure, Temperature, Modifier, Modifier Concentration, and Sample Matrix on the (SC-CO2) Fluid Extraction Efficiency of Different Phenolic Compounds. J. Chrom. Sci. 1995, 33, 658–662. [Google Scholar] [CrossRef]
- Wehling, R.L.; Froning, G.W.; Cuppett, S.L.; Niemann, L. Extraction of Cholesterol and Other Lipids from Dehydrated Beef Using (SC-CO2) Carbon Dioxide. J. Agric. Food Chem. 1992, 40, 1204–1207. [Google Scholar] [CrossRef]
- Chung, S.; Kwon, H.; Kim, N.P. Supercritical extraction of decellularized extracellular matrix from porcine adipose tissue as regeneration therapeutics. J. Cosm. Med. 2019, 3, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Raventós, M.; Duarte, S.; Alarcón, R. Application and Possibilities of (SC-CO2) CO2 Extraction in Food Processing Industry: An Overview. Food Sci. Technol. Int. 2002, 8, 269–284. [Google Scholar] [CrossRef]
- Roy, B.C.; Goto, M.; Hirose, T. Extraction of Ginger Oil with (SC-CO2) Carbon Dioxide: Experiments and Modeling. Ind. Eng. Chem. Res. 1996, 35, 607–612. [Google Scholar] [CrossRef]
- Martha, Y.L.R.; Alma, D.A.R.; Timothy, J.M.; Larysa, P.; Mohammed, A. Ultrasound-Enhanced Mass Transfer in Halal Compared with Non-Halal Chicken. J. Sci. Food Agric. 2010, 91, 130–133. [Google Scholar]
- Aziz, Y.A.; Chok, N.V. The Role of Awareness, Certification, and Marketing Components in Determining Purchase Intention Among Non-Muslims in Malaysia: A Structural Equation Modeling Approach. J. Int. Food Agribus. Mark. 2013, 25, 1–23. [Google Scholar] [CrossRef]
- Ismail, A.G.; Mohd-Noor, M.A. Finance and Foods: Are They Falling Apart? Acta Uni.s Dan. Oecon. 2016, 3, 113–126. [Google Scholar]
- Mumuni, A.G.; Veeck, A.; Luqmani, M.; Quraeshi, Z.A.; Kamarulzaman, Y. Religious Identity, Community and Religious Minorities’ Search Efforts for Religiously Sanctioned Food: The Case of Halal Food in Non-Muslim Majority Markets. Int. J. Consum. Stud. 2018, 42, 586–598. [Google Scholar] [CrossRef]
- Zailani, S.; Arrifin, Z.; Wahid, N.A.; Othman, R.; Fernando, Y. Traceability and Tracking Systems in Strengthening Food Supply Chain for Food Industry in Malaysia (A Review). J. Food Technol. 2010, 8, 74–81. [Google Scholar]
- Nakyinsige, K.; Fatimah, A.B.; Aghwan, Z.A.; Zulkifli, I.; Goh, Y.M.; Sazili, A.Q. Bleeding Efficiency and Meat Oxidative Stability and Microbiological Quality of New Zealand White Rabbits Subjected to Halal Slaughter without Stunning and Gas Stun-Killing. Asian-Australasian, J. Anim. Sci. 2014, 27, 406–413. [Google Scholar] [CrossRef] [Green Version]
- Saracin, V.C. The Food Law in Malaysia. Contemp. Read. Law Soc. Justice 2017, 2, 372–382. [Google Scholar]
- Sungkar, I. The global Halal trade, trends and issues. Halal J. 2008, 3, 32–34. [Google Scholar]
- Talib, M.S.A.; Sawari, S.S.M.; Hamid, A.B.A.; Chin, T.A. Emerging Food Market: An Institutional Theory of Certificate Implementation. Manag. Res. Rev. 2016, 39, 987–997. [Google Scholar] [CrossRef]
- Openmeals. Available online: https://www.open-meals.com (accessed on 1 September 2019).
- White, C.M. A Review of Human Studies Assessing Cannabidiol’s (CBD) Therapeutic Actions and Potential. J. Clin. Pharmacol. 2019, 59, 923–934. [Google Scholar] [CrossRef]
- Kim, N. Method for Manufacturing Liquid Containing CBD and Telemedicine System Providing CBD Infused Foods. KR10-2021-0054391, 27 April 2020. [Google Scholar]
- Hoffman, J.; Hwang, S.Y.; Ortega, A.; Kim, N.S.; Moon, K.S. The Standardization of Printable Materials and Direct Writing Systems. J. Elect. Pack. 2013, 135, 011006-13. [Google Scholar] [CrossRef]
- Kim, N.S.; Han, K.N.; Church, K.H. Direct Writing Technology for 21st Century Industries-Focus on Micro-Dispensing Deposition Write Technology. J. KSMTE. 2007, 5, 511–515. [Google Scholar]
- Hong, S.; Kim, N.S. Synthesis of 3D Printable Cu-Ag Core-shell Materials- Kinetics of CuO Film Removal. J. Elec. Mater. 2015, 44, 823–830. [Google Scholar] [CrossRef] [Green Version]
- Rhinos. Available online: https://www.rhino3d.com (accessed on 1 June 2019).
- Ultimaker. Available online: https://ultimaker.com (accessed on 1 October 2019).
Materials | Jam | Ketchup | Peanut Butter | Pudding | CBD Oil | Mayo | SC-CO2 Beef | SC-CO2 Chicken |
---|---|---|---|---|---|---|---|---|
Viscosity (Pa-s) | 10–100 | 75–100 | 250–1000 | 10–100 | 5–100 | 5–100 | 1200–15,000 | 800–12,000 |
Density (g/cm3) | 0.96 | 0.94 | 1.06 | 1.27 | 0.9–1.1 | 1.03 | 1.0–1.2 | 0.98–1.23 |
Maximum Pressure (MPa) | 0.145 | 0.432 | 1.205 | 0.145 | 0.25 | 0.123 | 1.84 | 1.82 |
Velocity of Press (m/s) | Tip Size (m) | Shear Rate (s−1) | ΔPFriction (Pa) | STDEV of ΔPFriction | ΔPTip (Pa) | STDEV of ΔPTip | ΔPPiston (Pa) | qv (m3/s) | STDEV of qv | |
---|---|---|---|---|---|---|---|---|---|---|
Air | 8.33E−05 | 4.00E−04 | 2.99E+02 | 2.39E+04 | 1.83E+03 | 4.06E−01 | 2.20E−01 | 1.47E−05 | 1.50E−08 | 8.16E−09 |
8.33E−05 | 2.00E−04 | 2.34E+03 | 2.67E+04 | 2.32E+03 | 6.39E+00 | 2.69E+00 | 1.44E−05 | 1.47E−08 | 6.22E−09 | |
8.33E−05 | 1.10E−04 | 1.43E+04 | 2.88E+04 | 2.60E+03 | 7.04E+01 | 3.37E+01 | 1.45E−05 | 1.49E−08 | 7.13E−09 | |
8.33E−05 | 7.50E−05 | 4.49E+04 | 3.04E+04 | 1.41E+03 | 3.25E+02 | 1.49E+02 | 1.45E−05 | 1.49E−08 | 6.81E−09 | |
1.67E−04 | 7.50E−04 | 2.94E+02 | 4.19E+04 | None | 2.13E−01 | None | 9.47E−05 | 9.73E−08 | None | |
3.33E−04 | 7.50E−04 | 5.81E+02 | 3.62E+04 | None | 4.21E−01 | None | 1.88E−04 | 1.93E−07 | None | |
5.00E−04 | 7.50E−04 | 8.72E+02 | 2.98E+04 | None | 6.31E−01 | None | 2.81E−04 | 2.89E−07 | None | |
6.67E−04 | 7.50E−04 | 1.14E+03 | 1.99E+04 | None | 8.26E−01 | None | 3.68E−04 | 3.78E−07 | None | |
8.33E−04 | 1.00E−03 | 1.90E+01 | 1.55E+04 | 9.20E+02 | 1.03E−02 | 1.03E−02 | 1.46E−05 | 1.49E−08 | 7.40E−09 | |
8.33E−04 | 7.50E−04 | 4.52E+01 | 2.07E+04 | 1.41E+03 | 3.27E−02 | 1.63E−02 | 1.46E−05 | 1.50E−08 | 7.44E−09 | |
8.33E−04 | 1.00E−03 | 1.83E+02 | 1.44E+04 | 1.85E+03 | 9.93E−02 | 7.58E−03 | 1.40E−04 | 1.44E−07 | 1.10E−08 | |
8.33E−04 | 7.50E−04 | 4.32E+02 | 2.08E+04 | 1.30E+03 | 3.13E−01 | 2.32E−02 | 1.40E−04 | 1.43E−07 | 1.06E−08 | |
8.33E−04 | 7.50E−04 | 1.41E+03 | 1.90E+04 | None | 1.02E+00 | None | 4.56E−04 | 4.68E−07 | None | |
8.33E−04 | 4.00E−04 | 2.86E+03 | 2.13E+04 | 1.35E+03 | 3.88E+00 | 3.17E−01 | 1.40E−04 | 1.44E−07 | 1.17E−08 | |
8.33E−04 | 2.00E−04 | 2.28E+04 | 2.50E+04 | 1.58E+03 | 6.20E+01 | 4.91E+00 | 1.40E−04 | 1.44E−07 | 1.14E−08 | |
8.33E−04 | 1.10E−04 | 1.38E+05 | 2.90E+04 | 1.92E+03 | 6.80E+02 | 6.15E+01 | 1.40E−04 | 1.44E−07 | 1.30E−08 | |
1.67E−03 | 7.50E−04 | 8.58E+02 | 2.96E+04 | 1.28E+03 | 1.00E+00 | 0.00E+00 | 2.77E−04 | 2.84E−07 | 9.92E−09 | |
1.67E−03 | 4.00E−04 | 5.66E+03 | 2.94E+04 | 8.92E+02 | 8.00E+00 | 0.00E+00 | 2.77E−04 | 2.84E−07 | 1.01E−08 | |
1.67E−03 | 2.00E−04 | 4.51E+04 | 2.61E+04 | 1.40E+03 | 1.23E+02 | 4.00E+00 | 2.76E−04 | 2.83E−07 | 8.83E−09 | |
1.67E−03 | 1.10E−04 | 2.75E+05 | 3.41E+04 | 1.16E+03 | 1.36E+03 | 5.40E+01 | 2.80E−04 | 2.87E−07 | 1.14E−08 | |
3.33E−03 | 7.50E−04 | 1.67E+03 | 3.14E+04 | 5.37E+02 | 1.21E+00 | 2.76E−02 | 5.40E−04 | 5.55E−07 | 1.26E−08 | |
3.33E−03 | 4.00E−04 | 1.10E+04 | 3.47E+04 | 9.43E+02 | 1.49E+01 | 4.43E−01 | 5.38E−04 | 5.53E−07 | 1.64E−08 | |
3.33E−03 | 2.00E−04 | 8.83E+04 | 3.31E+04 | 5.14E+02 | 2.40E+02 | 5.68E+00 | 5.40E−04 | 5.55E−07 | 1.31E−08 | |
3.33E−03 | 1.10E−04 | 5.33E+05 | 4.49E+04 | 8.73E+03 | 2.63E+03 | 4.58E+01 | 5.42E−04 | 5.57E−07 | 9.70E−09 | |
Oil | 8.33E−05 | 2.00E−04 | 2.31E+03 | 2.62E+04 | 4.68E+03 | 1.04E+04 | 5.62E+02 | 2.10E−02 | 1.45E−08 | 7.85E−10 |
8.33E−05 | 4.00E−04 | 3.00E+02 | 9.70E+03 | 1.02E+03 | 6.76E+02 | 4.76E+01 | 2.19E−02 | 1.51E−08 | 1.06E−09 | |
8.33E−05 | 7.50E−04 | 4.48E+01 | 7.98E+03 | 5.08E+02 | 5.38E+01 | 1.25E+00 | 2.15E−02 | 1.49E−08 | 3.44E−10 | |
8.33E−05 | 1.00E−03 | 1.90E+01 | 6.61E+03 | 5.83E+02 | 1.71E+01 | 5.86E−01 | 2.16E−02 | 1.49E−08 | 5.12E−10 | |
8.33E−04 | 2.00E−04 | 2.19E+04 | 9.03E+04 | 2.79E+04 | 9.86E+04 | 3.37E+03 | 2.22E−01 | 1.38E−07 | 4.71E−09 | |
8.33E−04 | 4.00E−04 | 2.70E+03 | 3.82E+04 | 4.83E+03 | 6.08E+03 | 4.00E+02 | 2.19E−01 | 1.36E−07 | 8.94E−09 | |
8.33E−04 | 7.50E−04 | 4.13E+02 | 2.53E+04 | 3.97E+03 | 4.95E+02 | 2.48E+01 | 2.21E−01 | 1.37E−07 | 6.85E−09 | |
8.33E−04 | 1.00E−03 | 1.74E+02 | 2.18E+04 | 3.65E+03 | 1.57E+02 | 7.29E+00 | 2.21E−01 | 6.36E−09 | 6.36E−09 | |
1.67E-03 | 2.00E-04 | 4.32E+04 | 2.38E+05 | 3.50E+04 | 1.94E+05 | 1.47E+04 | 4.37E-01 | 2.71E-07 | 1.58E-08 | |
1.67E−03 | 4.00E−04 | 5.43E+03 | 5.40E+04 | 3.44E+03 | 1.22E+04 | 6.83E+02 | 4.40E−01 | 2.73E−07 | 1.53E−08 | |
1.67E−03 | 7.50E−04 | 8.24E+02 | 6.52E+04 | 3.91E+03 | 9.88E+02 | 5.53E+01 | 4.40E−01 | 2.73E−07 | 1.53E−08 | |
1.67E−03 | 1.00E−03 | 3.46E+02 | 2.44E+04 | 3.34E+03 | 3.09E+02 | 3.63E+01 | 4.39E−01 | 1.72E−08 | 1.72E−08 | |
3.33E−03 | 2.00E−04 | 8.61E+04 | 4.50E+05 | 6.54E+04 | 3.86E+05 | 3.15E+04 | 8.70E−01 | 5.41E−07 | 4.39E−08 | |
3.33E−03 | 4.00E−04 | 1.08E+04 | 9.46E+04 | 1.11E+04 | 2.42E+04 | 1.76E+03 | 8.73E−01 | 5.41E−07 | 3.93E−08 | |
3.33E−03 | 7.50E−04 | 1.63E+03 | 4.71E+04 | 5.31E+03 | 1.96E+03 | 1.41E+02 | 8.73E−01 | 5.41E−07 | 3.91E−08 | |
3.33E−03 | 1.00E−03 | 6.88E+02 | 5.33E+04 | 7.55E+03 | 6.19E+02 | 6.19E+02 | 8.72E−01 | 5.40E−07 | 4.07E−08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, N.P.; Aditya, A.; Kang, H.-j.; Park, H.-D. Unique Approach of a Telemedicine System for CBD-Infused Foods. Processes 2021, 9, 936. https://doi.org/10.3390/pr9060936
Kim NP, Aditya A, Kang H-j, Park H-D. Unique Approach of a Telemedicine System for CBD-Infused Foods. Processes. 2021; 9(6):936. https://doi.org/10.3390/pr9060936
Chicago/Turabian StyleKim, Namsoo Peter, Abhilash Aditya, Hyun-jin Kang, and Hee-Deung Park. 2021. "Unique Approach of a Telemedicine System for CBD-Infused Foods" Processes 9, no. 6: 936. https://doi.org/10.3390/pr9060936
APA StyleKim, N. P., Aditya, A., Kang, H.-j., & Park, H.-D. (2021). Unique Approach of a Telemedicine System for CBD-Infused Foods. Processes, 9(6), 936. https://doi.org/10.3390/pr9060936