Efficient Production of 3′-Sialyllactose by Single Whole-Cell in One-Pot Biosynthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plasmids and Strains
2.3. Biocatalyst Preparation
2.4. Optimization of Reaction Conditions
2.5. Enzyme Activity Assays
2.6. Production of 3′-SL
2.7. Analytical Method
2.8. Statistical Analysis
3. Results
3.1. Single-Cell Construction
3.2. Optimization of Biotransformation Temperature and pH
3.3. Optimization of Cell Extracts, Polyphosphate, CMP, and MgCl2
3.4. Optimization of Cell Permeability
3.5. Production of 3′-SL
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le Doare, K.; Holder, B.; Bassett, A.; Pannaraj, P.S. Mother’s Milk: A Purposeful Contribution to the Development of the Infant Microbiota and Immunity. Front. Immunol. 2018, 9, 361. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Kiewiet, M.B.G.; Logtenberg, M.J.; Groeneveld, A.; Nauta, A.; Schols, H.A.; Walvoort, M.T.C.; Harmsen, H.J.M.; de Vos, P. Effects of Different Human Milk Oligosaccharides on Growth of Bifidobacteria in Monoculture and Co-culture With Faecalibacterium prausnitzii. Front. Microbiol. 2020, 11, 569700. [Google Scholar] [CrossRef] [PubMed]
- Thurl, S.; Munzert, M.; Boehm, G.; Matthews, C.; Stahl, B. Systematic review of the concentrations of oligosaccharides in human milk. Nutr. Rev. 2017, 75, 920–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Idota, T.; Kawakami, H.; Murakami, Y.; Sugawara, M. Inhibition of cholera toxin by human milk fractions and sialyllactose. Biosci. Biotechnol. Biochem. 1995, 59, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Ten Bruggencate, S.J.; Bovee-Oudenhoven, I.M.; Feitsma, A.L.; van Hoffen, E.; Schoterman, M.H. Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutr. Rev. 2014, 72, 377–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bode, L.; Contractor, N.; Barile, D.; Pohl, N.; Prudden, A.R.; Boons, G.J.; Jin, Y.S.; Jennewein, S. Overcoming the limited availability of human milk oligosaccharides: Challenges and opportunities for research and application. Nutr. Rev. 2016, 74, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Bych, K.; Miks, M.H.; Johanson, T.; Hederos, M.J.; Vigsnaes, L.K.; Becker, P. Production of HMOs using microbial hosts-from cell engineering to large scale production. Curr. Opin. Biotechnol. 2019, 56, 130–137. [Google Scholar] [CrossRef]
- Sprenger, G.A.; Baumgartner, F.; Albermann, C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. J. Biotechnol. 2017, 258, 79–91. [Google Scholar] [CrossRef]
- Schenkman, S.; Eichinger, D.; Pereira, M.E.A.; Nussenzweig, V. Structural and functional properties of Trypanosoma trans-sialidase. Annu. Rev. Microbiol. 1994, 48, 499–523. [Google Scholar] [CrossRef]
- Michalak, M.; Larsen, D.M.; Jers, C.; Almeida, J.R.M.; Willer, M.; Li, H.; Kirpekar, F.; Kjærulff, L.; Gotfredsen, C.H.; Nordvang, R.T.; et al. Biocatalytic production of 3′-sialyllactose by use of a modified sialidase with superior trans-sialidase activity. Process Biochem. 2014, 49, 265–270. [Google Scholar] [CrossRef]
- Gilbert, M.; Cunningham, A.-M.; Watson, D.C.; Martin, A.; Rlchards, J.C.; Wakarchuk, W.W. Characterization of a recombinant Neisseria meningitidis alpha-2,3-sialyltransferase and its acceptor specificity. Eur. J. Biochem. 1997, 249, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, M.; Huang, S.; Yu, H.; Chokhawala, H.A.; Thon, V.; Chen, X. The Hd0053 gene of Haemophilus ducreyi encodes an alpha2,3-sialyltransferase. Biochem. Biophys. Res. Commun. 2007, 361, 555–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Nordvang, R.T.; Morthensen, S.T.; Zeuner, B.; Meyer, A.S.; Mikkelsen, J.D.; Pinelo, M. An integrated membrane system for the biocatalytic production of 3′-sialyllactose from dairy by-products. Bioresour. Technol. 2014, 166, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, X. Sialic acid metabolism and sialyltransferases: Natural functions and applications. Appl. Microbiol. Biotechnol. 2012, 94, 887–905. [Google Scholar] [CrossRef] [Green Version]
- Endo, T.; Koizumi, S.; Tabata, K.; Ozaki, A. Large-scale production of CMP-NeuAc and sialylated oligosaccharides through bacterial coupling. Appl. Microbiol. Biotechnol. 2000, 53, 257–261. [Google Scholar] [CrossRef]
- Gilbert, M.; Bayer, R.; Cunningham, A.M.; DeFrees, S.; Gao, Y.; Watson, D.C.; Young, N.M.; Wakarchuk, W.W. The synthesis of sialylated oligosaccharides using a CMP-Neu5Ac synthetase sialyltransferase fusion. Nat. Biotechnol. 1998, 16, 769–772. [Google Scholar] [CrossRef]
- Lee, S.G.; Lee, J.O.; Yi, J.K.; Kim, B.G. Production of cytidine 5′-monophosphate N-acetylneuraminic acid using recombinant Escherichia coli as a biocatalyst. Biotechnol. Bioeng. 2002, 80, 516–524. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, C.; Zhang, T.; Liu, Y.; Cheng, Z.; Liu, D.; Ying, H.; Niu, H. Novel one-pot ATP regeneration system based on three-enzyme cascade for industrial CTP production. Biotechnol. Lett. 2017, 39, 1875–1881. [Google Scholar] [CrossRef]
- Ishige, K.; Hamamoto, T.; Shiba, T.; Noguchi, T. Novel method for enzymatic synthesis of CMP-NeuAc. Biosci. Biotechnol. Biochem. 2001, 65, 1736–1740. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Ni, Z.; Chen, X.; Wang, G.; Wu, J.; Yao, J. Multi-Enzymatic Cascade One-Pot Biosynthesis of 3′-Sialyllactose Using Engineered Escherichia coli. Molecules 2020, 25, 3567. [Google Scholar] [CrossRef]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef] [Green Version]
- Pederson, S.; Skouv, J.; Kajitani, M.; Ishihama, A. Transcriptional organization of the rpsA operon of Escherichia coli. Mol. Genet. Genom. 1984, 196, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, M.; Crooke, E.; Kornberg, A. The Polyphosphate Kinase Gene of Escherichia coli. J. Biol. Chem. 1992, 267, 22556–22561. [Google Scholar] [CrossRef]
- Singh, A.; Van Hamme, J.D.; Ward, O.P. Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol. Adv. 2007, 25, 99–121. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Gao, B.; Cui, J.; Tan, Z.; Qiao, C.; Jia, S. Combination of multi-enzyme expression fine-tuning and co-substrates addition improves phenyllactic acid production with an Escherichia coli whole-cell biocatalyst. Bioresour. Technol. 2019, 287, 121423. [Google Scholar] [CrossRef]
- Ding, Q.B.; Ou, L.; Wei, D.Z.; Wei, X.K.; Xu, Y.M.; Zhang, C.Y. Enzymatic synthesis of nucleosides by nucleoside phosphorylase co-expressed in Escherichia coli. J. Zhejiang Univ. Sci. B 2010, 11, 880–888. [Google Scholar] [CrossRef] [Green Version]
- Todea, A.; Dreavă, D.M.; Benea, I.C.; Bîtcan, I.; Peter, F.; Boeriu, C.G. Achievements and Trends in Biocatalytic Synthesis of Specialty Polymers from Biomass-Derived Monomers Using Lipases. Processes 2021, 9, 646. [Google Scholar] [CrossRef]
- Nahálka, J.; Pätoprstý, V. Enzymatic synthesis of sialylation substrates powered by a novel polyphosphate kinase (PPK3). Org. Biomol. Chem. 2009, 7, 1778–1780. [Google Scholar] [CrossRef]
- Xiong, T.Z.; Jiang, J.; Bai, Y.J.; Fan, T.P.; Zhao, Y.; Zheng, X.H.; Cai, Y. Biosynthesis of D-danshensu from L-DOPA using engineered Escherichia coli whole cells. Appl. Microbiol. Biotechnol. 2019, 103, 6097–6105. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Li, H.Y.; Liu, P.P.; Yang, J.G.; Zhang, X.L.; Sun, Y.X. Construction of allitol synthesis pathway by multi-enzyme coexpression in Escherichia coli and its application in allitol production. J. Ind. Microbiol. Biotechnol. 2015, 42, 661–669. [Google Scholar] [CrossRef]
Description | Reference or Source | |
---|---|---|
Strains | ||
E. coli BL21 Star (DE3) ΔlacZΔnanETKA | F- ompT hsdSB (rB-, mB-) gal dcm rne131 (DE3) ΔlacZΔnanETKA | This study |
Genes | ||
css | CMP-sialic acid synthetase from Neisseria meningitides (U60146.1) | [16] |
st | α-2, 3-sialyltransferase from Neisseria gonorrhoeae (U60664.1) | [11] |
cmk | CMP kinase from Escherichia coli (X00785.1) | [22] |
ppk | Polyphosphate kinase from Escherichia coli (CP043942.1) | [23] |
Plasmids | ||
pCOLADuet-ST-CSS | pCOLADuet-1 containing st and css | This study |
pCOLADuet-CSS-ST | pCOLADuet-1 containing css and st | This study |
pETDuet-CMK-PPK | pETDuet-1 containing cmk and ppk | This study |
pETDuet-PPK-CMK | pETDuet-1 containing ppk and cmk | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Chen, X.; Ni, Z.; Yuan, L.; Sun, L.; Wang, Y.; Wu, J.; Yao, J. Efficient Production of 3′-Sialyllactose by Single Whole-Cell in One-Pot Biosynthesis. Processes 2021, 9, 932. https://doi.org/10.3390/pr9060932
Li Z, Chen X, Ni Z, Yuan L, Sun L, Wang Y, Wu J, Yao J. Efficient Production of 3′-Sialyllactose by Single Whole-Cell in One-Pot Biosynthesis. Processes. 2021; 9(6):932. https://doi.org/10.3390/pr9060932
Chicago/Turabian StyleLi, Zhongkui, Xiangsong Chen, Zhijian Ni, Lixia Yuan, Lijie Sun, Yu Wang, Jinyong Wu, and Jianming Yao. 2021. "Efficient Production of 3′-Sialyllactose by Single Whole-Cell in One-Pot Biosynthesis" Processes 9, no. 6: 932. https://doi.org/10.3390/pr9060932
APA StyleLi, Z., Chen, X., Ni, Z., Yuan, L., Sun, L., Wang, Y., Wu, J., & Yao, J. (2021). Efficient Production of 3′-Sialyllactose by Single Whole-Cell in One-Pot Biosynthesis. Processes, 9(6), 932. https://doi.org/10.3390/pr9060932