Effect of Gas Diffusion Layer Thickness on the Performance of Anion Exchange Membrane Fuel Cells
Abstract
1. Introduction
2. Experimental
2.1. The Preparation of Gas Diffusion Layers
2.2. Single AEMFC Assembly and Evaluation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burchardt, T.; Gouérec, P.; Sanchez-Cortezon, E.; Karichev, Z.; Miners, J.H. Alkaline fuel cells: Contemporary advancement and limitations. Fuel 2002, 81, 2151–2155. [Google Scholar] [CrossRef]
- Ge, X.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F.W.T.; Hor, T.S.A.; Zong, Y.; Liu, Z. Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catal. 2015, 5, 4643–4667. [Google Scholar] [CrossRef]
- Shen, S.Y.; Guo, Y.G.; Wei, G.H.; Luo, L.X.; Li, F.; Zhang, J.L. A perspective on the promoting effect of Ir and Au on Pd toward the ethanol oxidation reaction in alkaline media. Front. Energy 2018, 12, 501–508. [Google Scholar] [CrossRef]
- Yang, W.; Fellinger, T.-P.; Antonietti, M. Efficient Metal-Free Oxygen Reduction in Alkaline Medium on High-Surface-Area Mesoporous Nitrogen-Doped Carbons Made from Ionic Liquids and Nucleobases. J. Am. Chem. Soc. 2011, 133, 206–209. [Google Scholar] [CrossRef]
- Kostowskyj, M.A.; Gilliam, R.J.; Kirk, D.W.; Thorpe, S.J. Silver nanowire catalysts for alkaline fuel cells. Int. J. Hydrogen Energy 2008, 33, 5773–5778. [Google Scholar] [CrossRef]
- Paidar, M.; Fateev, V.; Bouzek, K. Membrane electrolysis—History, current status and perspective. Electrochim. Acta 2016, 209, 737–756. [Google Scholar] [CrossRef]
- Gottesfeld, S.; Dekel, D.R.; Page, M.; Bae, C.; Yan, Y.; Zelenay, P.; Kim, Y.S. Anion exchange membrane fuel cells: Current status and remaining challenges. J. Power Sources 2018, 375, 170–184. [Google Scholar] [CrossRef]
- Spendelow, J.S.; Wieckowski, A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys. Chem. Chem. Phys. 2007, 9, 2654–2675. [Google Scholar] [CrossRef]
- Akiyama, R.; Yokota, N.; Nishino, E.; Asazawa, K.; Miyatake, K. Anion Conductive Aromatic Copolymers from Dimethylaminomethylated Monomers: Synthesis, Properties, and Applications in Alkaline Fuel Cells. Macromolecules 2016, 49, 4480–4489. [Google Scholar] [CrossRef]
- Zhao, T.S.; Li, Y.S.; Shen, S.Y. Anion-exchange membrane direct ethanol fuel cells: Status and perspective. Front. Energy Power Eng. China 2010, 4, 443–458. [Google Scholar] [CrossRef]
- Truong, V.M.; Wang, C.-L.; Yang, M.; Yang, H. Effect of tunable hydrophobic level in the gas diffusion substrate and microporous layer on anion exchange membrane fuel cells. J. Power Sources 2018, 402, 301–310. [Google Scholar] [CrossRef]
- Myles, T.D.; Kiss, A.M.; Grew, K.N.; Peracchio, A.; Nelson, G.J.; Chiu, W. Calculation of Water Diffusion Coefficients in an Anion Exchange Membrane Using a Water Permeation Technique. J. Electrochem. Soc. 2011, 158, B790. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.-W.; Popov, B.N. Effect of PTFE content in microporous layer on water management in PEM fuel cells. J. Power Sources 2008, 177, 457–463. [Google Scholar] [CrossRef]
- Park, S.; Popov, B.N. Effect of cathode GDL characteristics on mass transport in PEM fuel cells. Fuel 2009, 88, 2068–2073. [Google Scholar] [CrossRef]
- Shimpalee, S.; Beuscher, U.; Van Zee, J.W. Analysis of GDL flooding effects on PEMFC performance. Electrochim. Acta 2007, 52, 6748–6754. [Google Scholar] [CrossRef]
- Lim, C.; Wang, C.Y. Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell. Electrochim. Acta 2004, 49, 4149–4156. [Google Scholar] [CrossRef]
- Omrani, R.; Shabani, B. Review of gas diffusion layer for proton exchange membrane-based technologies with a focus on unitised regenerative fuel cells. Int. J. Hydrogen Energy 2019, 44, 3834–3860. [Google Scholar] [CrossRef]
- Li, Y.S.; Zhao, T.S.; Xu, J.B.; Shen, S.Y.; Yang, W.W. Effect of cathode micro-porous layer on performance of anion-exchange membrane direct ethanol fuel cells. J. Power Sources 2011, 196, 1802–1807. [Google Scholar] [CrossRef]
- Deng, H.; Wang, D.; Wang, R.; Xie, X.; Yin, Y.; Du, Q.; Jiao, K. Effect of electrode design and operating condition on performance of hydrogen alkaline membrane fuel cell. Appl. Energy 2016, 183, 1272–1278. [Google Scholar] [CrossRef]
- Deng, H.; Wang, D.; Xie, X.; Zhou, Y.; Yin, Y.; Du, Q.; Jiao, K. Modeling of hydrogen alkaline membrane fuel cell with interfacial effect and water management optimization. Renew. Energy 2016, 91, 166–177. [Google Scholar] [CrossRef]
- Huo, S.; Park, J.W.; He, P.; Wang, D.; Jiao, K. Analytical modeling of liquid saturation jump effect for hydrogen alkaline anion exchange membrane fuel cell. Int. J. Heat Mass Transf. 2017, 112, 891–902. [Google Scholar] [CrossRef]
- Yang, D.; Yu, H.; Li, G.; Song, W.; Liu, Y.; Shao, Z. Effect of gas diffusion electrode parameters on anion exchange membrane fuel cell performance. Chin. J. Catal. 2014, 35, 1091–1097. [Google Scholar] [CrossRef]
- Kaspar, R.B.; Letterio, M.P.; Wittkopf, J.A.; Gong, K.; Gu, S.; Yan, Y. Manipulating Water in High-Performance Hydroxide Exchange Membrane Fuel Cells through Asymmetric Humidification and Wetproofing. J. Electrochem. Soc. 2015, 162, F483–F488. [Google Scholar] [CrossRef]
- Luo, X.; Wright, A.; Weissbach, T.; Holdcroft, S. Water permeation through anion exchange membranes. J. Power Sources 2018, 375, 442–451. [Google Scholar] [CrossRef]
- Omasta, T.J.; Wang, L.; Peng, X.; Lewis, C.A.; Varcoe, J.R.; Mustain, W.E. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells. J. Power Sources 2018, 375, 205–213. [Google Scholar] [CrossRef]
- Reshetenko, T.; Odgaard, M.; Schlueter, D.; Serov, A. Analysis of alkaline exchange membrane fuel cells performance at different operating conditions using DC and AC methods. J. Power Sources 2018, 375, 185–190. [Google Scholar] [CrossRef]
- Miller, H.A.; Vizza, F.; Marelli, M.; Zadick, A.; Dubau, L.; Chatenet, M.; Geiger, S.; Cherevko, S.; Doan, H.; Pavlicek, R.K.; et al. Highly active nanostructured palladium-ceria electrocatalysts for the hydrogen oxidation reaction in alkaline medium. Nano Energy 2017, 33, 293–305. [Google Scholar] [CrossRef]
- Truong, V.M.; Duong, N.B.; Wang, C.-L.; Yang, H. Effects of Cell Temperature and Reactant Humidification on Anion Exchange Membrane Fuel Cells. Materials 2019, 12, 2048. [Google Scholar] [CrossRef]
- Lin, G.; Nguyen, T.V. Effect of Thickness and Hydrophobic Polymer Content of the Gas Diffusion Layer on Electrode Flooding Level in a PEMFC. J. Electrochem. Soc. 2005, 152, A1942. [Google Scholar] [CrossRef]
- Zhiani, M.; Kamali, S.; Majidi, S. In-plane gas permeability and thought-plane resistivity of the gas diffusion layer influenced by homogenization technique and its effect on the proton exchange membrane fuel cell cathode performance. Int. J. Hydrogen Energy 2016, 41, 1112–1119. [Google Scholar] [CrossRef]





| Sample | GDL-120 | GDL-260 | GDL-310 | |||
|---|---|---|---|---|---|---|
| Thickness (μm) | 120 | 260 | 310 | |||
| Nominal basic weight (g/m2) | 95.3 | 140.2 | 150.7 | |||
| Air permeability (s) | 98.5 | 98.9 | 99.5 | |||
| Through-plane resistance (mΩ cm2) | 4.66 | 7.40 | 11.19 | |||
| Contact angle (°) | MPL | Back | MPL | Back | MPL | Back |
| 145.4 | 145.6 | 143.1 | 144.7 | 146.2 | 147.5 | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truong, V.M.; Duong, N.B.; Yang, H. Effect of Gas Diffusion Layer Thickness on the Performance of Anion Exchange Membrane Fuel Cells. Processes 2021, 9, 718. https://doi.org/10.3390/pr9040718
Truong VM, Duong NB, Yang H. Effect of Gas Diffusion Layer Thickness on the Performance of Anion Exchange Membrane Fuel Cells. Processes. 2021; 9(4):718. https://doi.org/10.3390/pr9040718
Chicago/Turabian StyleTruong, Van Men, Ngoc Bich Duong, and Hsiharng Yang. 2021. "Effect of Gas Diffusion Layer Thickness on the Performance of Anion Exchange Membrane Fuel Cells" Processes 9, no. 4: 718. https://doi.org/10.3390/pr9040718
APA StyleTruong, V. M., Duong, N. B., & Yang, H. (2021). Effect of Gas Diffusion Layer Thickness on the Performance of Anion Exchange Membrane Fuel Cells. Processes, 9(4), 718. https://doi.org/10.3390/pr9040718

