Analysis of the Physical Properties of Seeds of Selected Viburnum Species for the Needs of Seed Sorting Operations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Physical Properties
- volume (V), based on an experimentally determined volumetric coefficient of proportionality (k):
- density:
- T/W, T/L, W/L, m/T, m/W, m/L and m/D aspect ratios.
2.3. Statistical Analysis
3. Results and Discussion
3.1. Experimental Material
- 0.2 m s−1 for terminal velocity,
- 0.1 mm for seed thickness,
- 0.2 mm for seed width and length,
- 0.5° for the angle of external friction and
- 1.3 mg for seed mass.
3.2. Relationships between the Physical Properties of Seeds
3.3. Recommendations for Seed Sorting
- fraction III (widest seeds), containing around 33% to around 37% of seeds from the entire batch of a given Viburnum species—from around 8% (V. opulus) to around 38% (V. sargentii) of class 1 seeds, from around 26% (V. sargentii) to around 39% (V. rhytodophyllum) of class 2 seeds, and from around 38% (V. lentago) to around 66% (V. opulus) of class 3 seeds;
- fraction II (medium-wide seeds), containing around 32% to around 38% of seeds from the entire batch of a given Viburnum species—from around 20% (V. opulus) to around 51% (V. rhytodophyllum) of small seeds, from around 23% (V. lentago) to around 51% (V. opulus) of medium-sized seeds, and from around 28% (V. rhytodophyllum) to around 43% (V. lentago) of large seeds;
- fraction I (narrowest seeds), containing around 26% to around 34% of seeds from the entire batch of a given Viburnum species—from around 32% (V. sargentii) to around 72% (V. opulus) of class 1 seeds, from around 17% (V. opulus) to around 41% (V. lentago) of class 2 seeds, and from 0% (V. opulus) to around 27% (V. rhytodophyllum) of class 3 seeds.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Götmark, F.; Götmark, E.; Jensen, A.M. Why be a shrub? A basic model and hypotheses for the adaptive values of a common growth form. Front. Plant Sci. 2016, 7, 1095. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Shen, H.; Chen, L.; Li, H.; Zhang, P.; Zhao, X.; Liu, T.; Liu, S.; Xing, A.; Hu, H.; et al. Species richness and composition of shrub-encroached grasslands in relation to environmental factors in northern China. J. Plant Ecol. 2019, 12, 56–66. [Google Scholar] [CrossRef]
- Boyce, R.L. Invasive shrubs and forest tree regeneration. J. Sustain. For. 2009, 28, 152–217. [Google Scholar] [CrossRef]
- Jaworski, A. Hodowla Lasu. Tom III. Charakterystyka Hodowlana Drzew i Krzewów Leśnych (Silviculture. Volume 3. Breeding Characteristics of Forest Trees and Shrubs); PWRiL: Warszawa, Poland, 2011; pp. 481–511. [Google Scholar]
- Li, H.; Shen, H.; Chen, L.; Liu, T.; Hu, H.; Zhao, X.; Zhou, L.; Zhang, P.; Fang, J. Effects of shrub encroachment on soil organic carbon in global grasslands. Sci. Rep. 2016, 6, 28974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolstad, P.V.; Elliott, K.J.; Miniat, C.F. Forests, shrubs, and terrain: Top-down and bottom-up controls on forest structure. Ecosphere 2018, 9, e02185. [Google Scholar] [CrossRef]
- Winkworth, R.C.; Donoghue, M.J. Viburnum phylogeny based on combined molecular data: Implications for taxonomy and biogeography. Am. J. Bot. 2005, 92, 653–666. [Google Scholar] [CrossRef]
- Clement, W.L.; Donoghue, M.J. Barcoding success as a function of phylogenetic relatedness in Viburnum, a clade of woody angiosperms. BMC Evol. Biol. 2012, 12, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awan, Z.I.; Rehman, H.; Awan, A.A.; Minhas, F.A.; Khan, M.N. Ethnobotanical importance of some highly medicinal plants of District Muzaffarabad, Pakistan with special reference to the species of the genus Viburnum. IOSR J. Pharm. Biol. Sci. 2013, 6, 53–66. [Google Scholar] [CrossRef]
- Spriggs, E.L.; Clement, W.L.; Sweeney, P.W.; Madriñán, S.; Edwards, E.J.; Donoghue, M.J. Temperate radiations and dying embers of a tropical past: The diversification of Viburnum. New Phytol. 2015, 207, 340–354. [Google Scholar] [CrossRef]
- Schmerler, S.B.; Clement, W.L.; Beaulieu, J.M.; Chatelet, D.S.; Sack, L.; Donoghue, M.J.; Edwards, E.J. Evolution of leaf form correlates with tropical−temperate transitions in Viburnum (Adoxaceae). Proc. R. Soc. B 2012, 279, 3905–3913. [Google Scholar] [CrossRef] [Green Version]
- Konarska, A. Comparative micromorphology and anatomy of flowers and floral secretory structures in two Viburnum species. Protoplasma 2017, 254, 523–537. [Google Scholar] [CrossRef] [Green Version]
- Spriggs, E.L.; Schlutius, C.; Eaton, D.A.; Park, B.; Sweeney, P.W.; Edwards, E.J.; Donoghue, M.J. Differences in flowering time maintain species boundaries in a continental radiation of Viburnum. Am. J. Bot. 2019, 106, 833–849. [Google Scholar] [CrossRef]
- Sinnott-Armstrong, M.A.; Lee, C.; Clement, W.L.; Donoghue, M.J. Fruit syndromes in Viburnum: Correlated evolution of color, nutritional content, and morphology in bird-dispersed fleshy fruits. BMC Evol. Biol. 2020, 20, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seneta, W.; Dolatowski, J. Dendrologia (Dendrology); Wydawnictwo Naukowe PWN: Warszawa, Poland, 2012; pp. 344–348. [Google Scholar]
- Klingeman, W.E.; White, S.A.; LeBude, A.; Fulcher, A.; Ward Gauthier, N.; Hale, F. Arthropod pests, plant diseases and abiotic disorders and their management on Viburnum species in the Southeastern U.S.: A review. J. Environ. Hort. 2014, 32, 84–102. [Google Scholar] [CrossRef]
- Jacobs, B.; Donoghue, M.J.; Bouman, F.; Huysmans, S.; Smets, E. Evolution and phylogenetic importance of endocarp and seed characters in Viburnum (Adoxaceae). Int. J. Plant Sci. 2008, 169, 409–431. [Google Scholar] [CrossRef]
- Karlsson, L.M.; Hidayati, S.N.; Walck, J.L.; Milberg, P. Complex combination of seed dormancy and seedling development determine emergence of Viburnum tinus (Caprifoliaceae). Ann. Bot. 2005, 95, 323–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baskin, C.; Chien, C.; Chen, S.; Baskin, J. Germination of Viburnum odoratissimum seeds: A new level of morphophysiological dormancy. Seed Sci. Res. 2008, 18, 179–184. [Google Scholar] [CrossRef]
- Chien, C.-T.; Chen, S.-Y.; Tsai, C.-C.; Baskin, J.M.; Baskin, C.C.; Kuo-Huang, L.-L. Deep simple epicotyl morphophysiological dormancy in seeds of two Viburnum species, with special reference to shoot growth and development inside the seed. Ann. Bot. 2011, 108, 13–22. [Google Scholar] [CrossRef]
- Chaisurisri, K.; Edwards, D.G.W.; El-Kassaby, Y.A. Effects of seed size on seedling attributes in Sitka spruce. New For. 1994, 8, 81–87. [Google Scholar]
- Kaliniewicz, Z.; Tylek, P. Aspects of the process of sorting European black pine seeds. Forests 2019, 10, 966. [Google Scholar] [CrossRef] [Green Version]
- Poorter, L.; Rose, S.A. Light-dependent changes in the relationship between seed mass and seedling traits: A meta-analysis for rain forest tree species. Oecologia 2005, 142, 378–387. [Google Scholar] [CrossRef]
- Norden, N.; Daws, M.I.; Antoine, C.; Gonzalez, M.A.; Garwood, N.C.; Chave, J. The relationship between seed mass and mean time to germination for 1037 tree species across five tropical forests. Funct. Ecol. 2009, 23, 203–210. [Google Scholar] [CrossRef]
- Missanjo, E.; Maya, C.; Kapira, D.; Banda, H.; Kamanga-Thole, G. Effect of seed size and pretreatment methods on germination of Albizia lebbeck. ISRN Bot. 2013, 969026. [Google Scholar] [CrossRef]
- Karki, H.; Bargali, K.; Bargali, S.S. Effect of sowing time on germination and early seedling growth of Quercus floribunda Lindl. J. For. Environ. Sci. 2018, 34, 199–208. [Google Scholar] [CrossRef]
- Kaliniewicz, Z.; Anders, A.; Markowski, P.; Jadwisieńczak, K.; Krzysiak, Z. Analysis of the physical properties of seeds of selected juniper species. Acta Agroph. 2017, 24, 443–454. [Google Scholar]
- Kaliniewicz, Z.; Żuk, Z.; Kusińska, E. Physical properties of seeds of eleven spruce species. Forests 2018, 9, 617. [Google Scholar] [CrossRef] [Green Version]
- Kaliniewicz, Z.; Markowski, P.; Anders, A.; Jadwisieńczak, K.; Żuk, Z.; Krzysiak, Z. Physical properties of seeds of eleven fir species. Forests 2019, 10, 142. [Google Scholar] [CrossRef] [Green Version]
- Kaliniewicz, Z. Variation and correlation between the physical properties of dogwood seeds. Walailak J. Sci. Technol. 2020, 17, 1252–1265. [Google Scholar] [CrossRef]
- Załęski, A. Nasiennictwo Leśnych Drzew i Krzewów Iglastych (Management of Coniferous Forest Trees and Shrubs for Sseed Production); Oficyna Edytorska, Wydawnictwo Świat: Warszawa, Poland, 1995; pp. 117–121. [Google Scholar]
- Kaliniewicz, Z.; Markowski, P.; Anders, A.; Jadwisieńczak, B.; Rawa, T.; Szczechowicz, D. Basic physical properties of Norway spruce (Picea abies (L.) Karst.) seeds. Tech. Sci. 2016, 19, 103–115. [Google Scholar]
- Mohsenin, N.N. Physical Properties of Plant and Animal Materials; Gordon and Breach Science Public: New York, NY, USA, 1986. [Google Scholar]
- Kaliniewicz, Z.; Tylek, P.; Markowski, P.; Anders, A.; Rawa, T.; Zadrożny, M. Determination of shape factors and volume coefficients of seeds from selected coniferous trees. Tech. Sci. 2012, 15, 217–228. [Google Scholar]
- Yücel, C.; Baloch, F.S.; Özkan, H. Genetic analysis of some physical properties of bread wheat grain (Triticum aestivum L. em Thell). Turk. J. Agric. For. 2009, 33, 525–535. [Google Scholar] [CrossRef]
- Kalkan, F.; Kara, M. Handling, frictional and technological properties of wheat as affected by moisture content and cultivar. Powder Tech. 2011, 213, 116–122. [Google Scholar] [CrossRef]
- Kim, K.H.; Shin, S.H.; Park, S.; Park, J.C.; Kang, C.S.; Park, C.S. Relationship between pre-harvest sprouting and functional markers associated with grain weight, TaSUS2-2B, TaGW2-6A, and TaCWI-A1, in Korean wheat cultivars. SABRAO J. Breed. Genet. 2014, 46, 319–328. [Google Scholar]
- Kasraei, M.; Nejadi, J.; Shafiei, S. Relationship between grain physicochemical and mechanical properties of some Iranian wheat cultivars. J. Agric. Sci. Technol. 2015, 17, 635–647. [Google Scholar]
- Lema, M.; Santalla, M.; Rodiño, A.P.; De Ron, A.M. Field performance of natural narrow-leafed lupin from the northwestern Spain. Euphytica 2005, 144, 341–351. [Google Scholar] [CrossRef]
- Carrillo-Gavilán, M.A.; Lalagüe, H.; Vilà, M. Comparing seed removal of 16 pine species differing in invasiveness. Biol. Invasions 2010, 12, 2233–2242. [Google Scholar] [CrossRef]
- Kaliniewicz, Z.; Tylek, P.; Anders, A.; Markowski, P.; Rawa, T.; Ołdakowski, M.; Wąsowski, L. An analysis of the physical properties of seeds of selected deciduous tree species. Balt. For. 2016, 22, 169–174. [Google Scholar]
- Şevik, H.; Topaçoğlu, O. Variation and inheritance pattern in cone and seed characteristics of Scots pine (Pinus sylvestris L.) for evaluation of genetic diversity. J. Environ. Biol. 2015, 36, 1125–1130. [Google Scholar]
- Razaz, M.; Naqinezhad, A.; Otaghvari, A.M.; Colagar, A.H.; Zare, H. A study of Carpinus orientalis Mill. populations based on morphological characteristics in the Hyrcanian forests, n. Iran. Adv. Biores. 2013, 4, 98–104. [Google Scholar]
- Sivacioglu, A.; Ayan, S. Variation in cone and seed characteristic in a clonal seed orchard of Anatolian black pine [Pinus nigra Arnold subsp. paliasiana (Lamb.) Holmboe]. J. Environ. Biol. 2010, 31, 119–123. [Google Scholar]
- Gleiser, G.; Picher, M.C.; Veintimilla, P.; Martinez, J.; Verdú, M. Seed dormancy in relation to seed storage behavior in Acer. Bot. J. Linn. Soc. 2004, 145, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Aguinagalde, I.; Hampe, A.; Mohanty, A.; Martin, J.P.; Duminil, J.; Petit, R.J. Effects of life-history traits and species distribution on genetic structure at maternally inherited markers in European trees and shrubs. J. Biogeogr. 2005, 32, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Balkaya, A.; Özbakir, M.; Karaağaç, O. Pattern of variation for seed characteristics in Turkish populations of Cucurbita moschata Dutch. Afr. J. Agric. Res. 2010, 5, 1068–1076. [Google Scholar]
- Coşkuner, Y.; Karababa, E. Physical properties of coriander seeds (Coriandrum sativum L.). J. Food Eng. 2007, 80, 408–416. [Google Scholar] [CrossRef]
- Tylek, P. Friction and elasticity as separation properties of beech nuts. Sylwan 2006, 5, 51–58. [Google Scholar]
Indicator | Viburnum Species | |||||
---|---|---|---|---|---|---|
V. Dasyanthum | V. Lantana | V. Lentago | V. Opulus | V. Rhytodophyllum | V. Sargentii | |
Geom. mean diameter (mm) | 3.38 ± 0.20 a | 4.20 ± 0.28 d | 3.93 ± 0.18 c | 4.17 ± 0.32 d | 3.41 ± 0.23 a | 3.72 ± 0.21 b |
Sphericity index (%) | 60.74 ± 4.36 d | 57.04 ± 4.70 bc | 58.00 ± 2.70 c | 56.33 ± 3.48 b | 53.94 ± 4.45 a | 57.54 ± 3.13 c |
Volume (mm3) | 20.51 ± 3.59 a | 34.99 ± 7.13 d | 31.28 ± 4.24 c | 34.48 ± 8.19 d | 20.57 ± 4.21 a | 25.45 ± 4.18 b |
Density (g·cm−3) | 0.83 ± 0.19 a | 1.01 ± 0.11 c | 0.98 ± 0.17 c | 0.88 ± 0.13 ab | 1.00 ± 0.28 c | 0.91 ± 0.26 b |
Aspect ratio T/W (–) | 0.33 ± 0.05 b | 0.35 ± 0.04 c | 0.32 ± 0.04 b | 0.25 ± 0.03 a | 0.50 ± 0.09 d | 0.24 ± 0.03 a |
Aspect ratio T/L (–) | 0.27 ± 0.04 c | 0.25 ± 0.04 b | 0.25 ± 0.02 b | 0.21 ± 0.03 a | 0.28 ± 0.05 c | 0.21 ± 0.02 a |
Aspect ratio W/L (–) | 0.82 ± 0.07 d | 0.73 ± 0.09 b | 0.78 ± 0.07 c | 0.85 ± 0.08 e | 0.57 ± 0.08 a | 0.89 ± 0.08 f |
Aspect ratio m/T (g m−1) | 11.12 ± 2.56 a | 18.79 ± 2.74 d | 17.82 ± 2.92 c | 19.17 ± 3.70 d | 11.48 ± 2.62 a | 16.51 ± 4.11 b |
Aspect ratio m/W (g m−1) | 3.65 ± 0.71 a | 6.49 ± 0.88 e | 5.75 ± 1.01 d | 4.69 ± 0.74 c | 5.60 ± 1.26 d | 3.95 ± 0.90 b |
Aspect ratio m/L (g m−1) | 3.00 ± 0.60 a | 4.74 ± 0.70 e | 4.46 ± 0.74 d | 4.00 ± 0.69 c | 3.14 ± 0.60 a | 3.51 ± 0.78 b |
Aspect ratio m/D (g m−1) | 4.94 ± 0.96 a | 8.31 ± 1.01 e | 7.69 ± 1.20 d | 7.10 ± 1.15 c | 5.84 ± 1.11 b | 6.10 ± 1.37 b |
Viburnum Species | Coefficient of Correlation between Seed Mass and | ||||
---|---|---|---|---|---|
Terminal Velocity | Thickness | Width | Length | Angle of External Friction | |
V. dasyanthum | 0.506 * | 0.145 | 0.269 * | 0.129 | −0.181 * |
V. lantana | 0.323 * | 0.528 * | 0.632 * | 0.554 * | −0.201 * |
V. lentago | 0.418 * | 0.318 * | 0.173 | 0.134 | 0.038 |
V. opulus | 0.281 * | 0.428 * | 0.688 * | 0.587 * | −0.227 * |
V. rhytodophyllum | 0.107 | 0.055 | 0.071 | 0.103 | 0.073 |
V. sargentii | 0.428 * | −0.038 | 0.061 | 0.057 | −0.016 |
Attribute | Terminal Velocity | Thickness | Width | Length | Angle of External Friction |
---|---|---|---|---|---|
Thickness | 0.645 * | 1 | |||
Width | −0.206 * | −0.158 * | 1 | ||
Length | 0.208 * | 0.218 * | 0.511 * | 1 | |
Angle of ext. friction | −0.380 * | −0.325 * | 0.449 * | 0.196 * | 1 |
Mass | 0.476 * | 0.385 * | 0.529 * | 0.700 * | 0.032 |
Viburnum Species | Seed Class | Percentage (%) |
---|---|---|
V. dasyanthum | 1 (m < 15 mg) | 24.8 |
2 (m = 15–18 mg) | 35.5 | |
3 (m > 18 mg) | 39.7 | |
V. lantana | 1 (m < 32 mg) | 29.8 |
2 (m = 32–37 mg) | 34.7 | |
3 (m > 37 mg) | 35.5 | |
V. lentago | 1 (m < 27 mg) | 28.8 |
2 (m = 27–32 mg) | 37.3 | |
3 (m > 32 mg) | 33.9 | |
V. opulus | 1 (m < 27 mg) | 32.8 |
2 (m = 27–32 mg) | 33.6 | |
3 (m > 32 mg) | 33.6 | |
V. rhytodophyllum | 1 (m < 18 mg) | 30.6 |
2 (m = 18–21 mg) | 34.7 | |
3 (m > 21 mg) | 34.7 | |
V. sargentii | 1 (m < 20 mg) | 30.3 |
2 (m = 20–25 mg) | 37.7 | |
3 (m > 25 mg) | 32.0 |
Viburnum Species | Seed Fraction | Percentage (%) | Coefficient of Variation (%) of Seed Mass | |
---|---|---|---|---|
Fraction | Total | |||
V. dasyanthum | I (L ≤ 5.30 mm) | 28.9 | 19.7 | 19.8 |
II (L = 5.31–5.80 mm) | 38.0 | 20.9 | ||
III (L > 5.80 mm) | 33.1 | 18.1 | ||
I (W ≤ 4.30 mm) | 26.4 | 24.4 | ||
II (W = 4.31–4.70 mm) | 36.4 | 18.2 | ||
III (W > 4.70 mm) | 37.2 | 16.8 | ||
V. lantana | I (L ≤ 7.00 mm) | 34.7 | 17.4 | 17.5 |
II (L = 7.01–7.80 mm) | 35.5 | 11.7 | ||
III (L > 7.80 mm) | 29.8 | 14.3 | ||
I (W ≤ 5.10 mm) | 29.8 | 14.8 | ||
II (W = 5.11–5.60 mm) | 36.4 | 12.2 | ||
III (W > 5.60 mm) | 33.8 | 15.8 | ||
V. lentago | I (L ≤ 6.70 mm) | 35.6 | 18.6 | 16.5 |
II (L = 6.71–6.90 mm) | 36.4 | 13.9 | ||
III (L > 6.90 mm) | 28.0 | 16.3 | ||
I (W ≤ 5.10 mm) | 33.9 | 16.8 | ||
II (W = 5.11–5.50 mm) | 32.2 | 17.5 | ||
III (W > 5.50 mm) | 33.9 | 14.4 | ||
V. opulus | I (L ≤ 7.10 mm) | 32.0 | 20.0 | 21.3 |
II (L = 7.11–7.70 mm) | 36.9 | 14.6 | ||
III (L > 7.70 mm) | 31.1 | 21.1 | ||
I (W ≤ 6.00 mm) | 29.6 | 15.4 | ||
II (W = 6.01–6.60 mm) | 35.2 | 15.3 | ||
III (W > 6.60 mm) | 35.2 | 18.5 | ||
V. rhytodophyllum | I (L ≤ 6.20 mm) | 31.4 | 20.4 | 17.9 |
II (L = 6.21–6.60 mm) | 37.2 | 18.2 | ||
III (L > 6.60 mm) | 31.4 | 15.3 | ||
I (W ≤ 3.30 mm) | 28.9 | 20.1 | ||
II (W = 3.31–3.80 mm) | 38.0 | 18.3 | ||
III (W > 3.80 mm) | 33.1 | 14.8 | ||
V. sargentii | I (L ≤ 6.30 mm) | 32.0 | 21.6 | 21.5 |
II (L = 6.31–6.70 mm) | 37.7 | 23.8 | ||
III (L > 6.70 mm) | 30.3 | 18.8 | ||
I (W ≤ 5.50 mm) | 32.0 | 24.4 | ||
II (W = 5.51–6.00 mm) | 33.6 | 20.7 | ||
III (W > 6.00 mm) | 34.4 | 19.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaliniewicz, Z.; Choszcz, D.J. Analysis of the Physical Properties of Seeds of Selected Viburnum Species for the Needs of Seed Sorting Operations. Processes 2021, 9, 711. https://doi.org/10.3390/pr9040711
Kaliniewicz Z, Choszcz DJ. Analysis of the Physical Properties of Seeds of Selected Viburnum Species for the Needs of Seed Sorting Operations. Processes. 2021; 9(4):711. https://doi.org/10.3390/pr9040711
Chicago/Turabian StyleKaliniewicz, Zdzisław, and Dariusz J. Choszcz. 2021. "Analysis of the Physical Properties of Seeds of Selected Viburnum Species for the Needs of Seed Sorting Operations" Processes 9, no. 4: 711. https://doi.org/10.3390/pr9040711
APA StyleKaliniewicz, Z., & Choszcz, D. J. (2021). Analysis of the Physical Properties of Seeds of Selected Viburnum Species for the Needs of Seed Sorting Operations. Processes, 9(4), 711. https://doi.org/10.3390/pr9040711