Simplified Reactor Design for Mixed Culture-Based Electrofermentation toward Butyric Acid Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Inoculum
2.2. Experimental Setup
2.3. Analytical Methods and Calculations
3. Results and Discussion
3.1. Electrofermentation of Glucose
3.2. Electrofermentative Conversion of a Synthetic Mixture of Glucose, Acetate, and Ethanol at an Applied Voltage of −1.2 V
3.3. Effect of the Applied Potential on the Electrofermentation Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kleerebezem, R.; Joosse, B.; Rozendal, R.; Van Loosdrecht, M.C.M. Anaerobic digestion without biogas? Rev. Environ. Sci. Bio. Technol. 2015, 14, 787–801. [Google Scholar] [CrossRef]
- Kircher, M. Bioeconomy–present status and future needs of industrial value chains. New Biotechnol. 2021, 60, 96–104. [Google Scholar] [CrossRef]
- Salvador, R.; Puglieri, F.N.; Halog, A.; De Andrade, F.G.; Piekarski, C.M.; De Francisco, A.C. Key Aspects for Designing Business Models for a Circular Bioeconomy. J. Clean. Prod. 2021, 278, 124341. [Google Scholar] [CrossRef]
- Agler, M.T.; Wrenn, B.A.; Zinder, S.H.; Angenent, L.T. Waste to bioproduct conversion with undefined mixed cultures: The carboxylate platform. Trends Biotechnol. 2011, 29, 70–78. [Google Scholar] [CrossRef]
- Zhou, M.; Yan, B.; Wong, J.W.; Zhang, Y. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Bioresour. Technol. 2018, 248, 68–78. [Google Scholar] [CrossRef]
- Valentino, F.; Morgan-Sagastume, F.; Campanari, S.; Villano, M.; Werker, A.; Majone, M. Carbon recovery from wastewater through bioconversion into biodegradable polymers. New Biotechnol. 2017, 37, 9–23. [Google Scholar] [CrossRef]
- Bengtsson, S.; Hallquist, J.; Werker, A.; Welander, T. Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production. Biochem. Eng. J. 2008, 40, 492–499. [Google Scholar] [CrossRef]
- Jankowska, E.; Chwialkowska, J.; Stodolny, M.; Oleskowicz-Popiel, P. Volatile fatty acids production during mixed culture fermentation—The impact of substrate complexity and pH. Chem. Eng. J. 2017, 326, 901–910. [Google Scholar] [CrossRef]
- Soomro, A.F.; Abbasi, I.A.; Ni, Z.; Ying, L.; Liu, J. Influence of temperature on enhancement of volatile fatty acids fermentation from organic fraction of municipal solid waste: Synergism between food and paper components. Bioresour. Technol. 2020, 304, 122980. [Google Scholar] [CrossRef]
- Moscoviz, R.; Toledo-Alarcón, J.; Trably, E.; Bernet, N. Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems. Trends Biotechnol. 2016, 34, 856–865. [Google Scholar] [CrossRef]
- Schievano, A.; Sciarria, T.P.; Vanbroekhoven, K.; De Wever, H.; Puig, S.; Andersen, S.J.; Rabaey, K.; Pant, D. Electro-Fermentation–Merging Electrochemistry with Fermentation in Industrial Applications. Trends Biotechnol. 2016, 34, 866–878. [Google Scholar] [CrossRef]
- Chu, N.; Liang, Q.; Jiang, Y.; Zeng, R.J. Microbial electrochemical platform for the production of renewable fuels and chemicals. Biosens. Bioelectron. 2020, 150, 111922. [Google Scholar] [CrossRef]
- Bhagchandanii, D.D.; Babu, R.P.; Sonawane, J.M.; Khanna, N.; Pandit, S.; Jadhav, D.A.; Khilari, S.; Prasad, R. A Comprehensive Understanding of Electro-Fermentation. Ferment. 2020, 6, 92. [Google Scholar] [CrossRef]
- Sasaki, K.; Sasaki, D.; Kamiya, K.; Nakanishi, S.; Kondo, A.; Kato, S. Electrochemical biotechnologies minimizing the required electrode assemblies. Curr. Opin. Biotechnol. 2018, 50, 182–188. [Google Scholar] [CrossRef]
- Toledo-Alarcón, J.; Fuentes, L.; Etchebehere, C.; Bernet, N.; Trably, E. Glucose electro-fermentation with mixed cultures: A key role of the Clostridiaceae family. Int. J. Hydrogen Energy 2021, 46, 1694–1704. [Google Scholar] [CrossRef]
- Xafenias, N.; Anunobi, M.O.; Mapelli, V. Electrochemical startup increases 1,3-propanediol titers in mixed-culture glycerol fermentations. Process. Biochem. 2015, 50, 1499–1508. [Google Scholar] [CrossRef]
- Kim, C.; Lee, J.H.; Baek, J.; Kong, D.S.; Na, J.-G.; Lee, J.; Sundstrom, E.; Park, S.; Kim, J.R. Small Current but Highly Productive Synthesis of 1,3-Propanediol from Glycerol by an Electrode-Driven Metabolic Shift in Klebsiella pneumoniae L17. ChemSusChem 2020, 13, 564–573. [Google Scholar] [CrossRef]
- Villano, M.; Paiano, P.; Palma, E.; Miccheli, A.; Majone, M. Electrochemically Driven Fermentation of Organic Substrates with Undefined Mixed Microbial Cultures. ChemSusChem 2017, 10, 3091–3097. [Google Scholar] [CrossRef]
- Paiano, P.; Menini, M.; Zeppilli, M.; Majone, M.; Villano, M. Electro-fermentation and redox mediators enhance glucose conversion into butyric acid with mixed microbial cultures. Bioelectrochemistry 2019, 130, 107333. [Google Scholar] [CrossRef]
- Zigová, J.; Šturdík, E. Advances in biotechnological production of butyric acid. J. Ind. Microbiol. Biotechnol. 2000, 24, 153–160. [Google Scholar] [CrossRef]
- Jiang, L.; Fu, H.; Yang, H.K.; Xu, W.; Wang, J.; Yang, S.-T. Butyric acid: Applications and recent advances in its bioproduction. Biotechnol. Adv. 2018, 36, 2101–2117. [Google Scholar] [CrossRef]
- Rosa, L.F.M.; Hunger, S.; Gimkiewicz, C.; Zehnsdorf, A.; Harnisch, F. Paving the way for bioelectrotechnology: Integrating electrochemistry into bioreactors. Eng. Life Sci. 2017, 17, 77–85. [Google Scholar] [CrossRef]
- Chiranjeevi, P.; Patil, S.A. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies. Biotechnol. Adv. 2020, 39, 107468. [Google Scholar] [CrossRef]
- E Balch, W.; E Fox, G.; Magrum, L.J.; Woese, C.R.; Wolfe, R.S. Methanogens: Reevaluation of a unique biological group. Microbiol. Rev. 1979, 43, 260–296. [Google Scholar] [CrossRef]
- Zeikus, J.G. The biology of methanogenic bacteria. Bacteriol. Rev. 1977, 41, 514–541. [Google Scholar]
- APHA, AWWA, WEF Standard Methods for Examination of Water and Wastewater. Washingt. Am. Public Heal. Assoc. 2012.
- Albalasmeh, A.A.; Berhe, A.A.; Ghezzehei, T.A. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydr. Polym. 2013, 97, 253–261. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ahring, B.K. Isomerization ofn- andi-butyrate in anaerobic methanogenic systems. Antonie van Leeuwenhoek 1995, 68, 285–291. [Google Scholar] [CrossRef]
- Reddy, M.V.; Mohan, S.V.; Chang, Y.-C. Medium-Chain Fatty Acids (MCFA) Production Through Anaerobic Fermentation Using Clostridium kluyveri: Effect of Ethanol and Acetate. Appl. Biochem. Biotechnol. 2018, 185, 594–605. [Google Scholar] [CrossRef]
- Carucci, A.; Lindrea, K.; Majone, M.; Ramadori, R. Different mechanisms for the anaerobic storage of organic substrates and their effect on enhanced biological phosphate removal (EBPR). Water Sci. Technol. 1999, 39, 21–28. [Google Scholar] [CrossRef]
- Mulders, M.; Estevez-Alonso, A.; Stouten, G.R.; Tamis, J.; Pronk, M.; Kleerebezem, R. Volatile Fatty Acid Product Spectrum as a Function of the Solids Retention Time in an Anaerobic Granular Sludge Process. J. Environ. Eng. 2020, 146, 04020091. [Google Scholar] [CrossRef]
- McHugh, P.J.; Stergiou, A.D.; Symes, M.D. Decoupled Electrochemical Water Splitting: From Fundamentals to Applications. Adv. Energy Mater. 2020, 10, 2002453. [Google Scholar] [CrossRef]
- Moscoviz, R.; Trably, E.; Bernet, N. Electro-fermentation triggering population selection in mixed-culture glycerol fermentation. Microb. Biotechnol. 2017, 11, 74–83. [Google Scholar] [CrossRef]
- Seehra, M.S.; Ranganathan, S.; Manivannan, A. Carbon-assisted water electrolysis: An energy-efficient process to produce pure H[sub 2] at room temperature. Appl. Phys. Lett. 2007, 90, 44104. [Google Scholar] [CrossRef]
- Biswal, M.; Deshpande, A.; Kelkar, S.; Ogale, S. Water Electrolysis with a Conducting Carbon Cloth: Subthreshold Hydrogen Generation and Superthreshold Carbon Quantum Dot Formation. ChemSusChem 2014, 7, 883–889. [Google Scholar] [CrossRef]
- Giddings, C.G.S.; Nevin, K.P.; Ewoodward, T. Simplifying microbial electrosynthesis reactor design. Front. Microbiol. 2015, 6, 468. [Google Scholar] [CrossRef]
- Krieg, T.; Phan, L.M.P.; Wood, J.A.; Sydow, A.; Vassilev, I.; Krömer, J.O.; Mangold, K.-M.; Holtmann, D. Characterization of a membrane-separated and a membrane-less electrobioreactor for bioelectrochemical syntheses. Biotechnol. Bioeng. 2018, 115, 1705–1716. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paiano, P.; Premier, G.; Guwy, A.; Kaur, A.; Michie, I.; Majone, M.; Villano, M. Simplified Reactor Design for Mixed Culture-Based Electrofermentation toward Butyric Acid Production. Processes 2021, 9, 417. https://doi.org/10.3390/pr9030417
Paiano P, Premier G, Guwy A, Kaur A, Michie I, Majone M, Villano M. Simplified Reactor Design for Mixed Culture-Based Electrofermentation toward Butyric Acid Production. Processes. 2021; 9(3):417. https://doi.org/10.3390/pr9030417
Chicago/Turabian StylePaiano, Paola, Giuliano Premier, Alan Guwy, Amandeep Kaur, Iain Michie, Mauro Majone, and Marianna Villano. 2021. "Simplified Reactor Design for Mixed Culture-Based Electrofermentation toward Butyric Acid Production" Processes 9, no. 3: 417. https://doi.org/10.3390/pr9030417
APA StylePaiano, P., Premier, G., Guwy, A., Kaur, A., Michie, I., Majone, M., & Villano, M. (2021). Simplified Reactor Design for Mixed Culture-Based Electrofermentation toward Butyric Acid Production. Processes, 9(3), 417. https://doi.org/10.3390/pr9030417