Light as a Novel Inhibitor of Nitrite-Oxidizing Bacteria (NOB) for the Mainstream Partial Nitrification of Wastewater Treatment
Abstract
:1. Introduction
2. Material and Methods
2.1. Characteristics of Raw Wastewater
2.2. Experimental Procedures
2.3. Analysis
3. Results and Discussion
3.1. Effect of Blue Light on Nitrification in Batch Tests
3.2. Behavior of Nitrite Build-Up in the PSBR
3.3. Effect of MLSS and SRT on Partial Nitrification with Blue Light
3.4. Changes of a Nitrifying Bacteria Community by Blue Light
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.-W.; Wang, Y.-P.; Huang, Y.-X.; Sun, X.-F.; Sheng, G.-P.; Zeng, R.J.; Li, F.; Dong, F.; Wang, S.-G.; Tong, Z.-H.; et al. Integration of a Microbial Fuel Cell With Activated Sludge Process for Energy-Saving Wastewater Treatment: Taking a Sequencing Batch Reactor As an Example. Biotechnol. Bioeng. 2011, 108, 1260–1267. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Van Loosdrecht, M.C.M.; Daigger, G.T. Mainstream Partial nitritation–anammox in Municipal Wastewater Treatment: Status, Bottlenecks, and Further Studies. Appl. Microbiol. Biotechnol. 2017, 101, 1365–1383. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Peng, Y.; Qiu, S.; Zhu, A.; Ren, N. Complete Nitrogen Removal from Municipal Wastewater via Partial Nitrification by Appropriately Alternating anoxic/Aerobic Conditions in a Continuous Plug-Flow Step Feed Process. Water Res. 2014, 55, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhu, G. Biological Nitrogen Removal With Nitrification and Denitrification via Nitrite Pathway. Appl. Microbiol. Biotechnol. 2006, 73, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Aslan, S.; Miller, L.; Dahab, M. Ammonium Oxidation via Nitrite Accumulation under Limited Oxygen Concentration in Sequencing Batch Reactors. Bioresour. Technol. 2009, 100, 659–664. [Google Scholar] [CrossRef]
- Yuan, Z.; Oehmen, A.; Peng, Y.; Ma, Y.; Keller, J. Sludge Population Optimisation in Biological Nutrient Removal Wastewater Treatment Systems through on-Line Process Control: A re/View. Rev. Environ. Sci. Bio/Technology 2008, 7, 243–254. [Google Scholar] [CrossRef]
- Laureni, M.; Falås, P.; Robin, O.; Wick, A.; Weissbrodt, D.G.; Nielsen, J.L.; Ternes, T.A.; Morgenroth, E.; Joss, A. Mainstream Partial Nitritation and Anammox: Long-Term Process Stability and Effluent Quality at Low Temperatures. Water Res. 2016, 101, 628–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomas, M.W.; Lipschultz, F. Forming the Primary Nitrite Maximum: Nitrifiers or Phytoplankton? Limnol. Oceanogr. 2006, 51, 2453–2467. [Google Scholar] [CrossRef] [Green Version]
- Karl, D.M.; Bidigare, R.R.; Church, M.J.; Dore, J.E.; Letelier, R.M.; Mahaffey, C.; Zehr, J.P. The Nitrogen Cycle in the North Pacific Trades Biome: An Evolving Paradigm. Nitrogen Mar. Environ. 2008, 2, 705–769. [Google Scholar] [CrossRef]
- Olson, R.J.; RJ, O. Differential Photoinhibition of Marine Nitrifying Bacteria: A Possible Mechanism for the Formation of the Primary Nitrite Maximum. J. Mar. Res. 1981, 39, 227–238. [Google Scholar]
- Guerrero, M.; Jones, R. Photoinhibition of Marine Nitrifying Bacteria. I. Wavelength-Dependent Response. Mar. Ecol. Prog. Ser. 1996, 141, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Lomas, M.W.; Glibert, P.M. Temperature Regulation of Nitrate Uptake: A Novel Hypothesis about Nitrate Uptake and Re-Duction in Cool-Water Diatoms. Limnol. Oceanogr. 1999, 44, 556–572. [Google Scholar] [CrossRef]
- Mackey, K.R.; Bristow, L.; Parks, D.R.; Altabet, M.A.; Post, A.F.; Paytan, A. The Influence of Light on Nitrogen Cycling and the Primary Nitrite Maximum in a Seasonally Stratified Sea. Prog. Oceanogr. 2011, 91, 545–560. [Google Scholar] [CrossRef] [Green Version]
- Collos, Y. Nitrate Uptake, Nitrite Release and Uptake, and New Production Estimates. Mar. Ecol. Prog. Ser. 1998, 171, 293–301. [Google Scholar] [CrossRef]
- Kang, D.; Kim, K.; Jang, Y.; Moon, H.; Ju, D.; Kwon, G.; Jahng, D. Enhancement of Wastewater Treatment Efficiency through Modulation of Aeration and Blue Light on Wastewater-Borne Algal-Bacterial Consortia. Int. Biodeterior. Biodegrad. 2018, 135, 9–18. [Google Scholar] [CrossRef]
- AWA; WEF. Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA: Washington, DC, USA, 2005. [Google Scholar]
- Kang, D.; Kim, K.; Jang, Y.; Moon, H.; Ju, D.; Jahng, D. Nutrient Removal and Community Structure of Wastewater-Borne Algal-Bacterial Consortia Grown in Raw Wastewater With Various Wavelengths of Light. Int. Biodeterior. Biodegrad. 2018, 126, 10–20. [Google Scholar] [CrossRef]
- Merbt, S.N.; Stahl, D.A.; Casamayor, E.O.; Martí, E.; Nicol, G.W.; Prosser, J.I. Differential Photoinhibition of Bacterial and Archaeal Ammonia Oxidation. FEMS Microbiol. Lett. 2011, 327, 41–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernat, K.; Wojnowska-Baryła, I.; Dobrzynska, A. Denitrification With Endogenous Carbon Source at Low C/N and Its Effect on P(3HB) Accumulation. Bioresour. Technol. 2008, 99, 2410–2418. [Google Scholar] [CrossRef]
- Guerrero, M.; Jones, R. Light-Induced Absorbance Changes Associated With Photoinhibition and Pigments in Nitrifying Bacteria. Aquat. Microb. Ecol. 1997, 13, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, M.A.; Jones, R.D. Photoinhibition of Marine Nitrifying Bacteria. II. Dark Recovery After Monochromatic or Poly-Chromatic Irradiation. Mar. Ecol. Prog. Ser. 1996, 141, 193–198. [Google Scholar] [CrossRef]
- Martínez, C.; Bernard, O.; Mairet, F. Maximizing Microalgae Productivity by Shading Outdoor Cultures. This Work Was Supported by the CONICYT Doctoral Grant (Carlos Martínez), and by the Phycover (ANR-14-CE04-0011) and Purple Sun (ANR-13-BIME-0004) Projects. F. Mairet Is Grateful to “FMJH Program Gaspard Monge in Optimization and Operation research”. IFAC-PapersOnLine 2017, 50, 8734–8739. [Google Scholar] [CrossRef]
- Laureni, M.; Weissbrodt, D.G.; Villez, K.; Robin, O.; De Jonge, N.; Rosenthal, A.; Wells, G.; Nielsen, J.L.; Morgenroth, E.; Joss, A. Biomass Segregation Between Biofilm and Flocs Improves the Control of Nitrite-Oxidizing Bacteria in Mainstream Partial Nitritation and Anammox Processes. Water Res. 2019, 154, 104–116. [Google Scholar] [CrossRef]
- Rosenberg, E.; DeLong, E.F.; Lory, S.; Stackebrandt, E.; Thompson, F. The Prokaryotes: Other Major Lineages of Bacteria and the Archaea; Springer: Berlin/Heidelberg, Germany, 2014; pp. 733–749. [Google Scholar] [CrossRef] [Green Version]
- Prosser, J.I.; Head, I.M.; Stein, L.Y. The Family Nitrosomonadaceae: Berlin, Heidelberg. In The Prokaryotes: Alphaproteo-Bacteria and Betaproteobacteria; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 901–918. [Google Scholar] [CrossRef]
- Starkenburg, S.R.; Chain, P.S.; Sayavedra-Soto, L.A.; Hauser, L.; Land, M.L.; Larimer, F.W.; Malfatti, S.A.; Klotz, M.G.; Bottomley, P.J.; Arp, D.J.; et al. Genome Sequence of the Chemolithoautotrophic Nitrite-Oxidizing Bacterium Nitro-Bacter Winogradskyi Nb-255. Appl. Environ. Microbiol. 2006, 72, 2050–2063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
BOD5 | SS | TN | TKN | NH4+-N | NOx−-N | TP | Alk. |
---|---|---|---|---|---|---|---|
243.2 | 185.2 | 72.7 | 72.1 | 42.1 | 0.3 | 5.9 | 179.5 |
±68.1 | ±33.2 | ±26.4 | ±26.2 | ±20.5 | ±0.2 | ±0.6 | ±28.2 |
Category | Operation Condition | ||
---|---|---|---|
Phase 1 | Phase 2 | Phase 3 | |
MLSS (mg/L) | 2.500 ± 215 | 1.500 ± 198 | 1.500 ± 163 |
SRT (days) | 15 | 15 | 10 |
Blue Light Intensity (μmol/m2/s) | 100 | 100 | 100 |
Family Percentiles (%) (a) | PSBR | SBR | |
---|---|---|---|
Nitrosomonadaceae | 0.379 | 0.126 | |
Nitrospiraceae | 0.141 | 4.840 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Park, Y.-G. Light as a Novel Inhibitor of Nitrite-Oxidizing Bacteria (NOB) for the Mainstream Partial Nitrification of Wastewater Treatment. Processes 2021, 9, 346. https://doi.org/10.3390/pr9020346
Kim K, Park Y-G. Light as a Novel Inhibitor of Nitrite-Oxidizing Bacteria (NOB) for the Mainstream Partial Nitrification of Wastewater Treatment. Processes. 2021; 9(2):346. https://doi.org/10.3390/pr9020346
Chicago/Turabian StyleKim, Keugtae, and Yong-Gyun Park. 2021. "Light as a Novel Inhibitor of Nitrite-Oxidizing Bacteria (NOB) for the Mainstream Partial Nitrification of Wastewater Treatment" Processes 9, no. 2: 346. https://doi.org/10.3390/pr9020346
APA StyleKim, K., & Park, Y.-G. (2021). Light as a Novel Inhibitor of Nitrite-Oxidizing Bacteria (NOB) for the Mainstream Partial Nitrification of Wastewater Treatment. Processes, 9(2), 346. https://doi.org/10.3390/pr9020346