Simulation of Flexible Fibre Particle Interaction with a Single Cylinder
Abstract
:1. Introduction
2. Computational Setup and Governing Equations
2.1. Single Phase Flow
Model Validation
2.2. Fibre Suspension Model
3. Results
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yamamoto, S.; Matsuoka, T. Dynamic simulation of fiber suspensions in shear flow. J. Chem. Phys. 1995, 102, 2254–2260. [Google Scholar] [CrossRef]
- Yamamoto, S.; Matsuoka, T. A method for dynamic simulation of rigid and flexible fibers in a flow field. J. Chem. Phys. 1993, 98, 644–650. [Google Scholar] [CrossRef]
- Yamamoto, S.; Matsuoka, T. Viscosity of dilute suspensions of rodlike particles: A numerical simulation method. J. Chem. Phys. 1994, 100, 3317–3324. [Google Scholar] [CrossRef]
- Schmid, C.F.; Switzer, L.H.; Klingenberg, D.J. Simulations of fiber flocculation: Effects of fiber properties and interfiber friction. J. Rheol. 2000, 44, 781–809. [Google Scholar] [CrossRef] [Green Version]
- Lindström, S.B.; Uesaka, T. Simulation of the motion of flexible fibers in viscous fluid flow. Phys. Fluids 2007, 19, 113307. [Google Scholar] [CrossRef]
- Yamanoi, M.; Maia, J.; Kwak, T.-S. Analysis of rheological properties of fibre suspensions in a Newtonian fluid by direct fibre simulation. Part 2: Flexible fibre suspensions. J. Non Newton. Fluid Mech. 2010, 165, 1064–1071. [Google Scholar] [CrossRef]
- Yamanoi, M.; Maia, J.M. Analysis of rheological properties of fibre suspensions in a Newtonian fluid by direct fibre sim-ulation. Part1: Rigid fibre suspensions. J. Non Newton. Fluid Mech. 2010, 165, 1055–1063. [Google Scholar] [CrossRef]
- Andrić, J.; Lindström, S.B.; Sasic, S.; Nilsson, H. Rheological properties of dilute suspensions of rigid and flexible fibers. J. Non Newton. Fluid Mech. 2014, 212, 36–46. [Google Scholar] [CrossRef]
- Switzer, L.H.; Klingenberg, D.J. Rheology of sheared flexible fiber suspensions via fiber-level simulations. J. Rheol. 2003, 47, 759–778. [Google Scholar] [CrossRef] [Green Version]
- Redlinger-Pohn, J.D.; König, L.M.; Kloss, C.; Goniva, C.; Radl, S.; Papadrakakis, M. Modelling of Non-Spherical, Elongated Particles for Industrial Suspension Flow Simulation. In Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete Island, Greece, 5–10 June 2016. [Google Scholar]
- Sasic, S.; Almstedt, A.-E. Dynamics of fibres in a turbulent flow field–A particle-level simulation technique. Int. J. Heat Fluid Flow 2010, 31, 1058–1064. [Google Scholar] [CrossRef]
- Guo, H.; Xua, B. A novel method for dynamic simulation of flexible fibers in a 3D swirling flow. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 1473–1480. [Google Scholar] [CrossRef]
- Delmotte, B.; Climent, E.; Plouraboué, F. A general formulation of bead models applied to flexible fibers and active fila-ments at low Reynolds number. J. Comput. Phys. 2015, 286, 14–37. [Google Scholar]
- MacMeccan, R.M.; Clausen, J.R.; Neitzel, G.P.; Aidun, C.K. Simulating deformable particle suspensions using a coupled lattice-Boltzmann and fi-nite-element method. J. Fluid Mech. 2009, 618, 13–39. [Google Scholar] [CrossRef]
- Qi, D. Direct simulations of flexible cylindrical fiber suspensions in finite Reynolds number flows. J. Chem. Phys. 2006, 125, 114901. [Google Scholar] [CrossRef] [PubMed]
- Peskin, C.S. Numerical analysis of blood flow in the heart. J. Comput. Phys. 1977, 25, 220–252. [Google Scholar] [CrossRef]
- Chaouche, M.; Koch, D.L. Rheology of non-Brownian rigid fiber suspensions with adhesive contacts. J. Rheol. 2001, 45, 369–382. [Google Scholar] [CrossRef]
- Yasuda, K.; Henmi, S.; Mori, N. Effects of abrupt expansion geometries on flow-induced fiber orientation and concen-tration distributions in slit channel flows of fiber suspensions. Polym. Compos. 2005, 26, 660–670. [Google Scholar] [CrossRef]
- Forgacs, O.; Mason, S. Particle motions in sheared suspensions: X. Orbits of flexible threadlike particles. J. Col. Loid. Sci. 1959, 14, 473–491. [Google Scholar] [CrossRef]
- Arlov, A.; Forgacs, O.; Mason, S. Particle motions in sheared suspensions IV. General behaviour of wood pulp fibres. Sven. Papp. 1958, 61, 61–67. [Google Scholar]
- Sepehr, M.; Carreau, P.J.; Moan, M.; Ausias, G. Rheological properties of short fiber model suspensions. J. Rheol. 2004, 48, 1023–1048. [Google Scholar] [CrossRef]
- Switzer, L.H.; Klingenberg, D.J. Simulations of fiber floc dispersion in linear flow fields. Nord. Pulp Pap. Res. J. 2003, 18, 141–144. [Google Scholar] [CrossRef]
- Yasuda, K.; Kyuto, T.; Mori, N. An experimental study of flow-induced fiber orientation and concentration distributions in a concentrated suspension flow through a slit channel containing a cylinder. Rheol. Acta 2004, 43, 137–145. [Google Scholar] [CrossRef]
- Vakil, A.; Green, S. Two-dimensional side-by-side circular cylinders at moderate Reynolds numbers. Comput. Fluids 2011, 51, 136–144. [Google Scholar] [CrossRef]
- Forgacs, O. The hydrodynamic behaviour of papermaking fibres. Fundam. Papermak. Fibres 1958, 447, 37. [Google Scholar]
- Bharti, R.; Chhabra, R.P.; Eswaran, V. Steady Flow of Power Law Fluids across a Circular Cylinder. Can. J. Chem. Eng. 2008, 84, 406–421. [Google Scholar] [CrossRef]
- Chakraborty, J.; Verma, N.; Chhabra, R.P. Wall effects in flow past a circular cylinder in a plane channel: A numerical study. Chem. Eng. Process. Process. Intensif. 2004, 43, 1529–1537. [Google Scholar] [CrossRef]
- Niu, X.; Chew, Y.; Shu, C. Simulation of flows around an impulsively started circular cylinder by Taylor series expan-sion-and least squares-based lattice Boltzmann method. J. Comput. Phys. 2003, 188, 176–193. [Google Scholar] [CrossRef]
- Park, J.; Kwon, K.; Choi, H. Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160. KSME Int. J. 1998, 12, 1200–1205. [Google Scholar] [CrossRef]
- Dennis, S.C.R.; Chang, G.-Z. Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100. J. Fluid Mech. 1970, 42, 471–489. [Google Scholar] [CrossRef]
- Fornberg, B. A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech. 1980, 98, 819–855. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.F.; Klingenberg, D.J. Dynamic simulation of flexible fibers composed of linked rigid bodies. J. Chem. Phys. 1997, 106, 2949–2960. [Google Scholar] [CrossRef] [Green Version]
- Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 1998, 12, 620–631. [Google Scholar] [CrossRef]
- Kim, S.; Karrila, S.J. Microhydrodynamics: Principles and Selected Applications; Courier Corporation: Chelmsford, MA, USA, 2013. [Google Scholar]
- Jeffery, G.B. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1922, 102, 161–179. [Google Scholar] [CrossRef] [Green Version]
Reference | Re = 20 | Re = 40 |
---|---|---|
Present work | 1.9999 | 1.4998 |
Bharti et al. [26] | 2.0455 | 1.5292 |
Chakraborty et al. [27] | 2.0223 | 1.5172 |
Niu et al. [28] | 2.1110 | 1.5740 |
Park et al. [29] | 2.0100 | 1.5100 |
Dennis and Chang [30] | 2.0450 | 1.5220 |
Fornberg [31] | 2.0000 | 1.4980 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamedi, N.; Westerberg, L.-G. Simulation of Flexible Fibre Particle Interaction with a Single Cylinder. Processes 2021, 9, 191. https://doi.org/10.3390/pr9020191
Hamedi N, Westerberg L-G. Simulation of Flexible Fibre Particle Interaction with a Single Cylinder. Processes. 2021; 9(2):191. https://doi.org/10.3390/pr9020191
Chicago/Turabian StyleHamedi, Naser, and Lars-Göran Westerberg. 2021. "Simulation of Flexible Fibre Particle Interaction with a Single Cylinder" Processes 9, no. 2: 191. https://doi.org/10.3390/pr9020191
APA StyleHamedi, N., & Westerberg, L.-G. (2021). Simulation of Flexible Fibre Particle Interaction with a Single Cylinder. Processes, 9(2), 191. https://doi.org/10.3390/pr9020191