Ultrasound and Ozone Processing of Cashew Apple Juice: Effects of Single and Combined Processing on the Juice Quality and Microbial Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Juice Preparation
2.2. Thermal and Non-Thermal Processing
2.2.1. Thermal Pasteurization
2.2.2. Ultrasound Processing
2.2.3. Ozonation
2.2.4. Sequential Processing
2.3. Quantification of Bioactive Compounds
2.4. Polyphenol Oxidase and Peroxidase Activity
2.5. Microbial Storage Stability
2.6. Multivariate Statistical Analysis
3. Results and Discussion
3.1. Storage Stability
3.2. Microbial Stability during Cold Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Liao, X.; Li, J.; Muhammad, A.I.; Suo, Y.; Ahn, J.; Liu, D.; Chen, S.; Hu, Y.; Ye, X.; Ding, T. Preceding Treatment of Non-Thermal Plasma (NTP) Assisted the Bactericidal Effect of Ultrasound on Staphylococcus Aureus. Food Control 2018, 90, 241–248. [Google Scholar] [CrossRef]
- Leistner, L.; Leon, G.M. Gorris Food Preservation by Hurdle Technology. Trends Food Sci. Technol. 1995, 6, 41–45. [Google Scholar] [CrossRef]
- Putnik, P.; Pavlić, B.; Šojić, B.; Zavadlav, S.; Žuntar, I.; Kao, L.; Kitonić, D.; Kovačević, D.B. Innovative Hurdle Technologies for the Preservation of Functional Fruit Juices. Foods 2020, 9, 699. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, K.; Garvín, A.; Ibarz, A.; Augusto, P.E.D. Ascorbic Acid Stability in Fruit Juices during Thermosonication. Ultrason. Sonochemistry 2017, 37, 375–381. [Google Scholar] [CrossRef]
- Khadhraoui, B.; Ummat, V.; Tiwari, B.K.; Fabiano-Tixier, A.S.; Chemat, F. Review of Ultrasound Combinations with Hybrid and Innovative Techniques for Extraction and Processing of Food and Natural Products. Ultrason. Sonochemistry 2021, 76, 105625. [Google Scholar] [CrossRef] [PubMed]
- Traore, M.B.; Sun, A.; Gan, Z.; Long, W.Y.; Senou, H.; Zhu, Y.; Togo, J.; Fofana, K.H.; Sidibe, A.M. Assessing the Impact of the Combined Application of Ultrasound and Ozone on Microbial Quality and Bioactive Compounds with Antioxidant Attributes of Cabbage (Brassica oleracea L. Var. Capitata). J. Food Process. Preserv. 2020, 44, 1–11. [Google Scholar] [CrossRef]
- Liao, X.; Cullen, P.J.; Muhammad, A.I.; Jiang, Z.; Ye, X.; Liu, D.; Ding, T. Cold Plasma–Based Hurdle Interventions: New Strategies for Improving Food Safety. Food Eng. Rev. 2020, 12, 321–332. [Google Scholar] [CrossRef]
- Yildiz, S.; Pokhrel, P.R.; Unluturk, S.; Barbosa-Cánovas, G.V. Shelf Life Extension of Strawberry Juice by Equivalent Ultrasound, High Pressure, and Pulsed Electric Fields Processes. Food Res. Int. 2021, 140, 110040. [Google Scholar] [CrossRef]
- Aadil, R.M.; Zeng, X.A.; Sun, D.W.; Wang, M.S.; Liu, Z.W.; Zhang, Z.H. Combined Effects of Sonication and Pulsed Electric Field on Selected Quality Parameters of Grapefruit Juice. LWT–Food Sci. Technol. 2015, 62, 890–893. [Google Scholar] [CrossRef]
- Aadil, R.M.; Zeng, X.A.; Han, Z.; Sahar, A.; Khalil, A.A.; Rahman, U.U.; Khan, M.; Mehmood, T. Combined Effects of Pulsed Electric Field and Ultrasound on Bioactive Compounds and Microbial Quality of Grapefruit Juice. J. Food Process. Preserv. 2018, 42, e13507. [Google Scholar] [CrossRef]
- Wong-paz, J.E.; Muñiz-márquez, D.B.; Aguilar-zárate, P.; Rodríguez-herrera, R.; Aguilar, C.N. Microplate Quanti Fi Cation of Total Phenolic Content from Plant Extracts Obtained by Conventional and Ultrasound Methods. Phytochem. Anal. 2014, 25, 439–444. [Google Scholar] [CrossRef]
- Oliveira, A.F.A.; Mar, J.M.; Santos, S.F.; da Silva Júnior, J.L.; Kluczkovski, A.M.; Bakry, A.M.; de Araújo Bezerra, J.; de Cássia Saraiva Nunomura, R.; Sanches, E.A.; Campelo, P.H. Non-Thermal Combined Treatments in the Processing of Açai (Euterpe Oleracea) Juice. Food Chem. 2018, 265, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Assunçao, R.B.; Mercadante, A.Z. Carotenoids and Ascorbic Acid from Cashew Apple (Anacardium occidentale L.): Variety and Geographic Effects. Food Chem. 2003, 81, 495–502. [Google Scholar] [CrossRef]
- Rabelo, M.C.; Fontes, C.P.M.L.; Rodrigues, S. Enzyme Synthesis of Oligosaccharides Using Cashew Apple Juice as Substrate. Bioresour. Technol. 2009, 100, 5574–5580. [Google Scholar] [CrossRef] [PubMed]
- Sucupira, N.R.; Sabino, L.B.d.S.; Gondim Neto, L.; Gouveia, S.T.; de Figueiredo, R.W.; Maia, G.A.; de Sousa, P.H.M. Evaluation of Cooking Methods on the Bioactive Compounds of Cashew Apple Fibre and Its Application in Plant-Based Foods. Heliyon 2020, 6, e05346. [Google Scholar] [CrossRef]
- Fonteles, T.V.; Leite, A.K.F.; da Silva, A.R.A.; Fernandes, F.A.N.; Rodrigues, S. Sonication Effect on Bioactive Compounds of Cashew Apple Bagasse. Food Bioprocess Technol. 2017, 10, 1854–1864. [Google Scholar] [CrossRef]
- Deak, T. Thermal Treatment. Food Saf. Manag. A Pract. Guide Food Ind. 2014, 1, 423–442. [Google Scholar] [CrossRef]
- Patil, S.; Bourke, P.; Frias, J.M.; Tiwari, B.K.; Cullen, P.J. Inactivation of Escherichia Coli in Orange Juice Using Ozone. Innov. Food Sci. Emerg. Technol. 2009, 10, 551–557. [Google Scholar] [CrossRef] [Green Version]
- Selimović, A.; Salkić, M.; Selimović, A. Direct Spectrophotometric Determination of L- Ascorbic Acid in Pharmaceutical Preparations Using Sodium Oxalate as a Stabilizer. Int. J. Basic Appl. Sci. 2011, 11, 106–109. [Google Scholar]
- Folin, O.; Ciocalteu, V. On Tyrosine and Tryptophane Determinations in Proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar] [CrossRef]
- Linhares, M.d.F.D.; Alves Filho, E.G.; Silva, L.M.A.; Fonteles, T.V.; Wurlitzer, N.J.; de Brito, E.S.; Fernandes, F.A.N.; Rodrigues, S. Thermal and Non-Thermal Processing Effect on Açai Juice Composition. Food Res. Int. 2020, 136, 109506. [Google Scholar] [CrossRef] [PubMed]
- Francis, F.J. Chapter 7–Analysis of Anthocyanins. In Markakis; Academic Press: Cambridge, MA, USA, 1982; pp. 181–207. ISBN 978-0-12-472550-8. [Google Scholar]
- Fonteles, T.V.; Costa, M.G.M.; de Jesus, A.L.T.; de Miranda, M.R.A.; Fernandes, F.A.N.; Rodrigues, S. Power Ultrasound Processing of Cantaloupe Melon Juice: Effects on Quality Parameters. Food Res. Int. 2012, 48, 41–48. [Google Scholar] [CrossRef]
- Downes, F.P.; Ito, K. American Public Health Association–Compendium of Methods for the Microbiological Examination of Foods; Salfinger, Y., Tortorello, M.L., Eds.; American Public Health Association: Washington, DC, USA, 2015; ISBN 978-0-87553-022-2. [Google Scholar]
- Ministry of Health; National Health Surveillance Agency RDC N° 12. Available online: https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-vegetal/legislacao-1/biblioteca-de-normas-vinhos-e-bebidas/resolucao-rdc-no-12-de-2-de-janeiro-de-2001.pdf (accessed on 29 November 2021).
- De Souza Carvalho, L.M.; Lemos, M.C.M.; Sanches, E.A.; da Silva, L.S.; de Araújo Bezerra, J.; Aguiar, J.P.L.; das Chagas do Amaral Souza, F.; Alves Filho, E.G.; Campelo, P.H. Improvement of the Bioaccessibility of Bioactive Compounds from Amazon Fruits Treated Using High Energy Ultrasound. Ultrason. Sonochemistry 2020, 67, 105148. [Google Scholar] [CrossRef] [PubMed]
- Chaves, J.O.; de Souza, M.C.; da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.d.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F.; et al. Extraction of Flavonoids From Natural Sources Using Modern Techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef]
- Guerrouj, K.; Sánchez-Rubio, M.; Taboada-Rodríguez, A.; Cava-Roda, R.M.; Marín-Iniesta, F. Sonication at Mild Temperatures Enhances Bioactive Compounds and Microbiological Quality of Orange Juice. Food Bioprod. Process. 2016, 99, 20–28. [Google Scholar] [CrossRef]
- Shah, N.N.A.K.; Supian, N.A.M.; Hussein, N.A. Disinfectant of Pummelo (Citrus grandis L. Osbeck) Fruit Juice Using Gaseous Ozone. J. Food Sci. Technol. 2019, 56, 262–272. [Google Scholar] [CrossRef]
- Noguera, N.H.; Lima, D.C.; Filho, E.G.A.; Fonteles, T.V.; Rodrigues, S. Influence of Different Non-Thermal Processing on Guava, Orange, and Tangerine Juices and the Food Matrix Effects. Food Bioprocess Technol. 2021, 14, 1662–1672. [Google Scholar] [CrossRef]
- Fonteles, T.V.; Leite, A.K.F.; Silva, A.R.A.; Carneiro, A.P.G.; Miguel, E.D.C.; Cavada, B.S.; Fernandes, F.A.N.; Rodrigues, S. Ultrasound Processing to Enhance Drying of Cashew Apple Bagasse Puree: Influence on Antioxidant Properties and in Vitro Bioaccessibility of Bioactive Compounds. Ultrason. Sonochemistry 2016, 31, 237–249. [Google Scholar] [CrossRef]
- Torres, B.; Tiwari, B.K.; Patras, A.; Wijngaard, H.H.; Brunton, N.; Cullen, P.J.; O’Donnell, C.P. Effect of Ozone Processing on the Colour, Rheological Properties and Phenolic Content of Apple Juice. Food Chem. 2011, 124, 721–726. [Google Scholar] [CrossRef]
- Sroy, S.; Fundo, J.F.; Miller, F.A.; Brandão, T.R.S.; Silva, C.L.M. Impact of Ozone Processing on Microbiological, Physicochemical, and Bioactive Characteristics of Refrigerated Stored Cantaloupe Melon Juice. J. Food Process. Preserv. 2019, 43, e14276. [Google Scholar] [CrossRef]
- Zia, S.; Khan, M.R.; Zeng, X.A.; Sehrish, S.; Shabbir, M.A.; Aadil, R.M. Combined Effect of Microwave and Ultrasonication Treatments on the Quality and Stability of Sugarcane Juice during Cold Storage. Int. J. Food Sci. Technol. 2019, 54, 2563–2569. [Google Scholar] [CrossRef]
- Castro-López, C.; Rojas, R.; Ernesto, J.; Sánchez-Alejo, G.N.-M.; Martínez-Ávila, G.C.G. Phenolic Compounds Recovery from Grape Fruit and Phenolic Compounds Recovery from Grape Fruit and By-Products: An Overview of Extraction Methods. In Grape and Wine Biotechnology; Morata, A., Ed.; InTech Open: London, UK, 2016; pp. 103–123. [Google Scholar]
- Morales-Blancas, E.F.; Chandia, V.E.; Cisneros-Zevallos, L. Thermal Inactivation Kinetics of Peroxidase and Lipoxygenase from Broccoli, Green Asparagus and Carrots. J. Food Sci. 2002, 67, 146–154. [Google Scholar] [CrossRef]
- Abid, M.; Jabbar, S.; Hu, B.; Hashim, M.M.; Wu, T.; Lei, S.; Khan, M.A.; Zeng, X. Thermosonication as a Potential Quality Enhancement Technique of Apple Juice. Ultrason. Sonochemistry 2014, 21, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K.; O’Donnell, C.P.; Patras, A.; Brunton, N.; Cullen, P.J. Stability of Anthocyanins and Ascorbic Acid in Sonicated Strawberry Juice during Storage. Eur. Food Res. Technol. 2009, 228, 717–724. [Google Scholar] [CrossRef]
- Anaya-Esparza, L.M.; Velázquez-Estrada, R.M.; Roig, A.X.; García-Galindo, H.S.; Sayago-Ayerdi, S.G.; Montalvo-González, E. Thermosonication: An Alternative Processing for Fruit and Vegetable Juices. Trends Food Sci. Technol. 2017, 61, 26–37. [Google Scholar] [CrossRef]
- Traore, M.B.; Sun, A.; Gan, Z.; Senou, H.; Togo, J.; Fofana, K.H. Antimicrobial Capacity of Ultrasound and Ozone for Enhancing Bacterial Safety on Inoculated Shredded Green Cabbage (Brassica oleracea var. Capitata). Can. J. Microbiol. 2020, 66, 125–137. [Google Scholar] [CrossRef]
- Del Rosario García-Mateos, M.; Quiroz-González, B.; Corrales-García, J.; Ybarra-Moncada, M.C.; Leyva-Ruelas, G. Ozone-High Hydrostatic Pressure Synergy for the Stabilization of Refrigerated Pitaya (Stenocereus pruinosus) Juice. Innov. Food Sci. Emerg. Technol. 2019, 56, 102187. [Google Scholar] [CrossRef]
- Mason, T.J. Advances in Sonochemistry; Elsevier: Amsterdam, The Netherlands, 1996; Volume 4. [Google Scholar]
- Oliveira, V.S.; Rodrigues, S.; Fernandes, F.A.N. Effect of High Power Low Frequency Ultrasound Processing on the Stability of Lycopene. Ultrason. Sonochemistry 2015, 27, 586–591. [Google Scholar] [CrossRef]
- Karaca, H.; Velioglu, Y.S. Ozone Applications in Fruit and Vegetable Processing. Food Rev. Int. 2007, 23, 91–106. [Google Scholar] [CrossRef]
Processing | Samples | Processing Parameters |
---|---|---|
PAST | PAST | 90 °C ± 2 °C/1 min |
US | US1 | 75 W/cm2; 2 min; 20 °C |
US2 | 75 W/cm2; 2 min; 40 °C | |
US3 | 75 W/cm2; 10 min; 20 °C | |
US4 | 75 W/cm2; 10 min; 40 °C | |
US5 | 373 W/cm2; 2 min; 20 °C | |
US6 | 373 W/cm2; 2 min; 40 °C | |
US7 | 373 W/cm2; 10 min; 20 °C | |
US8 | 373 W/cm2;10 min; 40 °C | |
OZ | OZ1 | 0.08 mg O3/mL of juice |
OZ2 | 0.16 mgO3/mL of juice | |
OZ3 | 0.24 mg O3/mL of juice | |
Sequential processing | US+OZ | US (373 W/cm2;10 min; 40 °C) followed by OZ (0.24 mg O3/mL) |
OZ+US | OZ (0.24 mg O3/mL) followed by US (373 W/cm2;10 min; 40 °C) |
Sample | Log CFU/mL | Log Reduction Factor | ||
---|---|---|---|---|
TMAM | Y&M | TMAM | Y&M | |
Control | 4.9 | 3.4 | -- | -- |
US8 | 4.8 | 1.6 | 0.1 | 1.8 |
OZ3 | 3.3 | 1.2 | 1.6 | 2.2 |
OZ+US | 3.0 | 1.1 | 1.9 | 2.3 |
US+OZ | 3.1 | 1.1 | 1.8 | 2.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonteles, T.V.; Barroso, M.K.d.A.; Alves Filho, E.d.G.; Fernandes, F.A.N.; Rodrigues, S. Ultrasound and Ozone Processing of Cashew Apple Juice: Effects of Single and Combined Processing on the Juice Quality and Microbial Stability. Processes 2021, 9, 2243. https://doi.org/10.3390/pr9122243
Fonteles TV, Barroso MKdA, Alves Filho EdG, Fernandes FAN, Rodrigues S. Ultrasound and Ozone Processing of Cashew Apple Juice: Effects of Single and Combined Processing on the Juice Quality and Microbial Stability. Processes. 2021; 9(12):2243. https://doi.org/10.3390/pr9122243
Chicago/Turabian StyleFonteles, Thatyane Vidal, Maria Karolina de Araújo Barroso, Elenilson de Godoy Alves Filho, Fabiano Andre Narciso Fernandes, and Sueli Rodrigues. 2021. "Ultrasound and Ozone Processing of Cashew Apple Juice: Effects of Single and Combined Processing on the Juice Quality and Microbial Stability" Processes 9, no. 12: 2243. https://doi.org/10.3390/pr9122243
APA StyleFonteles, T. V., Barroso, M. K. d. A., Alves Filho, E. d. G., Fernandes, F. A. N., & Rodrigues, S. (2021). Ultrasound and Ozone Processing of Cashew Apple Juice: Effects of Single and Combined Processing on the Juice Quality and Microbial Stability. Processes, 9(12), 2243. https://doi.org/10.3390/pr9122243