Kinetic Behavior of Fabricated CuO/ZrO2 Oxygen Carriers for Chemical Looping Oxygen Uncoupling
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Reduction of CuO Oxygen Carriers
3.2. Performance of Fabricated CuO/ZrO2 Oxygen Carrier
3.3. Reduction and Oxidation Kinetics of CuO/ZrO2 Oxygen Carriers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, F.; Fan, L.S. Clean coal conversion processes-Progress and challenges. Energy Environ. Sci. 2008, 1, 248–267. [Google Scholar] [CrossRef]
- Shen, L.; Wu, J.; Gao, Z.; Xiao, J. Reactivity deterioration of NiO/Al2O3 oxygen carrier for chemical looping combustion of coal in a 10 kWth reactor. Combust Flame 2009, 156, 1377–1385. [Google Scholar] [CrossRef]
- Sridhar, D.; Tong, A.; Kim, H.; Zeng, L.; Li, F.; Fan, L.S. Syngas chemical looping process: Design and construction of a 25 kW th subpilot unit. Energy Fuels 2012, 26, 2292–2302. [Google Scholar] [CrossRef]
- Mattisson, T.; Lyngfelt, A.; Leion, H. Chemical-looping with oxygen uncoupling for combustion of solid fuels. Int. J. Greenh Gas. Control. 2009, 3, 11–19. [Google Scholar] [CrossRef]
- Leion, H.; Mattisson, T.; Lyngfelt, A. Using chemical-looping with oxygen uncoupling (CLOU) for combustion of six different solid fuels. Energy Procedia 2009, 1, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Jerndal, E.; Mattisson, T.; Lyngfelt, A.; Combustion, C.; After, O. Chemical Engineering Research and Design 2006-Thermal Analysis of Chemical-Looping Combustion. Chem. Eng. Res. Des. 2006, 84, 795–806. [Google Scholar] [CrossRef]
- Cho, P.; Mattisson, T.; Lyngfelt, A. Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion. Fuel 2004, 83, 1215–1225. [Google Scholar] [CrossRef]
- Scheffe, J.R.; Allendorf, M.D.; Coker, E.N.; Jacobs, B.W.; McDaniel, A.H.; Weimer, A.W. Hydrogen production via chemical looping redox cycles using atomic layer deposition-synthesized iron oxide and cobalt ferrites. Chem. Mater. 2011, 23, 2030–2038. [Google Scholar] [CrossRef]
- Adánez, J.; De Diego, L.F.; García-Labiano, F.; Gayán, P.; Abad, A.; Palacios, J.M. Selection of oxygen carriers for chemical-looping combustion. Energy Fuels 2004, 18, 371–377. [Google Scholar] [CrossRef]
- Eyring, E.M.; Konya, G.; Lighty, J.S.; Sahir, A.H.; Sarofim, A.F.; Whitty, K. Chemical Looping with Copper Oxide as Carrier and Coal as Fuel. Oil Gas Sci. Technol. 2011, 66, 209–221. [Google Scholar] [CrossRef]
- Sahir, A.; Cadore, A.; Dansie, J.; Tingey, N.; Lighty, J. Process Analysis of Chemical Looping with Reduction (CLOU) and Chemical Looping Combustion (CLC) for Solid Fuels. In Proceedings of the 2nd International Conference on Chemical Looping, Darmstadt, Germany, 26–28 September 2012. [Google Scholar]
- Wang, K.; Yu, Q.; Qin, Q. Reduction kinetics of Cu-based oxygen carriers for chemical looping air separation. Energy Fuels 2013, 27, 5466–5474. [Google Scholar] [CrossRef]
- Song, H.; Shah, K.; Doroodchi, E.; Wall, T.; Moghtaderi, B. Reactivity of Al2O3- or SiO2-Supported Cu-, Mn-, and Co-based oxygen carriers for chemical looping air separation. Energy Fuels 2014, 28, 1284–1294. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, H.; Wang, K.; Mei, D.; Ma, Z.; Zheng, C. Reduction kinetics analysis of sol-gel-derived CuO/CuAl2O4 oxygen carrier for chemical looping with oxygen uncoupling. J. Therm. Anal. Calorim. 2016, 123, 745–756. [Google Scholar] [CrossRef]
- Wang, K.; Yu, Q.; Qin, Q.; Zuo, Z.; Wu, T. Evaluation of Cu-based oxygen carrier for chemical looping air separation in a fixed-bed reactor. Chem. Eng. J. 2016, 287, 292–301. [Google Scholar] [CrossRef]
- Luo, S.; Bayham, S.; Zeng, L.; McGiveron, O.; Chung, E.; Majumder, A.; Fan, L.S. Conversion of metallurgical coke and coal using a Coal Direct Chemical Looping (CDCL) moving bed reactor. Appl. Energy 2014, 118, 300–308. [Google Scholar] [CrossRef]
- Corbella, B.M.; de Diego, L.; García-Labiano, F.; Adánez, J.; Palacios, J.M. Characterization and performance in a multicycle test in a fixed-bed reactor of silica-supported copper oxide as oxygen carrier for chemical-looping combustion of methane. Energy Fuels 2006, 20, 148–154. [Google Scholar] [CrossRef]
- Chuang, S.Y.; Dennis, J.S.; Hayhurst, A.N.; Scott, S.A. Kinetics of the chemical looping oxidation of H2 by a co-precipitated mixture of CuO and Al2O3. Chem. Eng. Res. Des. 2011, 89, 1511–1523. [Google Scholar] [CrossRef]
- Hu, W.; Donat, F.; Scott, S.A.; Dennis, J.S. Kinetics of oxygen uncoupling of a copper based oxygen carrier. Appl. Energy 2016, 161, 92–100. [Google Scholar] [CrossRef]
- Khawam, A.; Flanagan, D.R. Solid-state kinetic models: Basics and mathematical fundamentals. J. Phys. Chem. B 2006, 110, 17315–17328. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ku, Y.; Chang, C.-W.; Shiu, S.-H.; Wu, H.-C.; Moed, N.M. Kinetic Behavior of Fabricated CuO/ZrO2 Oxygen Carriers for Chemical Looping Oxygen Uncoupling. Processes 2021, 9, 2156. https://doi.org/10.3390/pr9122156
Ku Y, Chang C-W, Shiu S-H, Wu H-C, Moed NM. Kinetic Behavior of Fabricated CuO/ZrO2 Oxygen Carriers for Chemical Looping Oxygen Uncoupling. Processes. 2021; 9(12):2156. https://doi.org/10.3390/pr9122156
Chicago/Turabian StyleKu, Young, Chia-Wei Chang, Shr-Han Shiu, Hsuan-Chih Wu, and Niels Michiel Moed. 2021. "Kinetic Behavior of Fabricated CuO/ZrO2 Oxygen Carriers for Chemical Looping Oxygen Uncoupling" Processes 9, no. 12: 2156. https://doi.org/10.3390/pr9122156
APA StyleKu, Y., Chang, C.-W., Shiu, S.-H., Wu, H.-C., & Moed, N. M. (2021). Kinetic Behavior of Fabricated CuO/ZrO2 Oxygen Carriers for Chemical Looping Oxygen Uncoupling. Processes, 9(12), 2156. https://doi.org/10.3390/pr9122156