Effects of Pore Structure of Different Rank Coals on Methane Adsorption Heat
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Preparation
2.2. Experimental Methods
2.2.1. Measurement of Pore Characteristics
2.2.2. Measurement of Adsorption Isotherms
2.2.3. Measurement of Adsorption Heat
3. Results and Discussion
3.1. Pore Structure Characteristics of Coal Samples
3.1.1. Pore Structure Measurement by LP-N2GA
3.1.2. Pore Structure Measurement by LP-CO2GA
3.1.3. Comprehensive Pore Structure Obtained by LP-N2GA and LP-CO2GA
3.2. Methane Adsorption Capacity and Adsorption Heat
3.3. Effect of Pore Structure on Methane Adsorption
3.3.1. Effect of SSA on Methane Adsorption
3.3.2. Effect of Pore Volume on Methane Adsorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karacan, C.Ö.; Ruiz, F.A.; Cotè, M.; Phipps, S. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. Int. J. Coal Geol. 2011, 86, 121–156. [Google Scholar] [CrossRef]
- Xue, S.; Yuan, L.; Xie, J.; Wang, Y. Advances in gas content based on outburst control technology in Huainan, China. Int. J. Min. Sci. Technol. 2014, 24, 385–389. [Google Scholar] [CrossRef]
- Milewska-Duda, J.; Duda, J.; Nodzeñski, A.; Lakatos, J. Absorption and adsorption of methane and carbon dioxide in hard coal and active carbon. Langmuir 2000, 16, 5458–5466. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Z.; Wang, C.; Elsworth, D.; Liu, W. Reassessment of coal permeability evolution using steady-state flow methods: The role of flow regime transition. Int. J. Coal Geol. 2019, 211, 103210. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, D.; Tang, D.; Tang, S.; Che, Y.; Huang, W. Preliminary evaluation of the coalbed methane production potential and its geological controls in the Weibei Coalfield, Southeastern Ordos Basin, China. Int. J. Coal Geol. 2009, 78, 1–15. [Google Scholar] [CrossRef]
- Li, Y.; Wu, S.; Nie, B.; Ma, Y. A new pattern of underground space-time tridimensional gas drainage: A case study in Yuwu coal mine, China. Energy Sci. Eng. 2019, 7, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Jin, K.; Cheng, Y.; Ren, T.; Zhao, W.; Tu, Q.; Dong, J.; Wang, Z.; Hu, B. Experimental investigation on the formation and transport mechanism of outburst coal-gas flow: Implications for the role of gas desorption in the development stage of outburst. Int. J. Coal Geol. 2018, 194, 45–58. [Google Scholar] [CrossRef]
- Kotarba, M.J.; Rice, D.D. Composition and origin of coalbed gases in the lower Silesian basin, Southwest Poland. Appl. Geochem. 2001, 16, 895–910. [Google Scholar] [CrossRef]
- Švabova, M.; Weishauptova, Z.; Přibyl, O. The effect of moisture on the sorption process of CO2 on coal. Fuel 2012, 92, 187–196. [Google Scholar] [CrossRef]
- Busch, A.; Gensterblum, Y. CBM and CO2-ECBM related sorption processes in coal: A review. Int. J. Coal Geol. 2011, 87, 49–71. [Google Scholar] [CrossRef]
- Alexeev, A.D.; Vasilenko, T.A.; Ulyanova, E.V. Closed porosity in fossil coals. Fuel 1999, 78, 635–638. [Google Scholar] [CrossRef]
- He, X.Q.; Nie, B.S. Diffusion mechanism of porous gases in coal seams. J. China Univ. Min. Technol. 2001, 30, 1–4. [Google Scholar]
- Krooss, B.M.; Van Bergen, F.; Gensterblum, Y.; Siemons, N.; Pagnier, H.J.M.; David, P. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals. Int. J. Coal Geol. 2002, 51, 69–92. [Google Scholar] [CrossRef]
- Hodot, B.B. Outburst of Coal and Coalbed Gas; China Industry Press: Beijing, China, 1966. [Google Scholar]
- IUPAC: Everett, D.H. Manual of symbols and terminology for physicochemical quantities and units. Pure Appl. Chem. 1972, 31, 579–638. [Google Scholar]
- Yan, F.; Xu, J.; Lin, B.; Peng, S.; Zou, Q.; Zhang, X. Changes in pore structure and permeability of anthracite coal before and after high-voltage electrical pulses treatment. Powder Technol. 2019, 343, 560–567. [Google Scholar] [CrossRef]
- Rexer, T.F.; Mathia, E.J.; Aplin, A.C.; Thomas, K.M. High pressure methane adsorption and characterization of pores in Posidonia shales and isolated kerogens. Energy Fuels 2014, 28, 2886–2901. [Google Scholar] [CrossRef] [Green Version]
- Zhai, C.; Qin, L.; Liu, S.; Xu, J.; Tang, Z.; Wu, S. Pore structure in coal: Pore evolution after cryogenic freezing with cyclic liquid nitrogen injection and its implication on coalbed methane extraction. Energy Fuels 2016, 30, 6009–6020. [Google Scholar] [CrossRef]
- Suuberg, E.M.; Deevi, S.C.; Yun, Y. Elastic behaviour of coals studied by mercury porosimetry. Fuel 1995, 74, 1522–1530. [Google Scholar] [CrossRef]
- Liu, X.; He, X. Effect of pore characteristics on coalbed methane adsorption in middle-high rank coals. Adsorption 2017, 23, 3–12. [Google Scholar] [CrossRef]
- An, F.; Cheng, Y.; Wu, D.; Wang, L. The effect of small micropores on methane adsorption of coals from Northern China. Adsorption 2013, 19, 83–90. [Google Scholar] [CrossRef]
- Chen, S.; Tao, S.; Tang, D.; Xu, H.; Li, S.; Zhao, J.; Jiang, Q.; Yang, H. Pore structure characterization of different rank coals using N2 and CO2 adsorption and its effect on CH4 adsorption capacity: A case in Panguan syncline, western Guizhou, China. Energy Fuels 2017, 31, 6034–6044. [Google Scholar] [CrossRef]
- Zhang, M.; Fu, X. Characterization of pore structure and its impact on methane adsorption capacity for semi-anthracite in Shizhuangnan Block, Qinshui Basin. J. Nat. Gas Sci. Eng. 2018, 60, 49–62. [Google Scholar] [CrossRef]
- Wang, F.; Cheng, Y.; Lu, S.; Jin, K.; Zhao, W. Influence of coalification on the pore characteristics of middle−high rank coal. Energy Fuels 2014, 28, 5729–5736. [Google Scholar] [CrossRef]
- Yue, G.; Wang, Z.; Tang, X.; Li, H.; Xie, C. Physical simulation of temperature influence on methane sorption and kinetics in coal (II): Temperature evolvement during methane adsorption in coal measurement and modeling. Energy Fuels 2015, 29, 6355–6362. [Google Scholar] [CrossRef]
- Feng, Z.; Cai, T.; Zhou, D.; Zhao, D.; Zhao, Y.; Wang, C. Temperature and deformation changes in anthracite coal after methane adsorption. Fuel 2017, 192, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Auroux, A. Calorimetry and Thermal Methods in Catalysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Horikawa, T.; Zeng, Y.; Do, D.D.; Sotowa, K.; Alcántara Avila, J.R. On the isosteric heat of adsorption of non-polar and polar fluids on highly graphitized carbon black. J. Colloid Interface Sci. 2015, 439, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, G.; Kang, J.; Zhou, F.; Deng, J. Analytical model and experimental investigation of the adsorption thermodynamics of coalbed methane. Adsorption 2019, 25, 201–216. [Google Scholar] [CrossRef]
- Kloutse, A.F.; Zacharia, R.; Cossement, D.; Chahine, R.; Balderas-Xicohténcatl, R.; Oh, H.; Streppel, B.; Schlichtenmayer, M.; Hirscher, M. Isosteric heat of hydrogen adsorption R. on MOFs: Comparison between adsorption calorimetry, sorption isosteric method, and analytical models. Appl. Phys. A 2015, 121, 1417–1424. [Google Scholar] [CrossRef]
- Skoczylas, N.; Pajdak, A.; Kudasik, M.; Braga, L.T.P. CH4 and CO2 sorption and diffusion carried out in various temperatures on hard coal samples of various degrees of coalification. J. Nat. Gas Sci. Eng. 2020, 81, 103449. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, S.; Pang, Y.; Li, J.; Xin, H. Effects of coal functional groups on adsorption microheat of coal bed methane. Energy Fuels 2015, 29, 1550–1557. [Google Scholar] [CrossRef]
- Pajdak, A.; Skoczylas, N.; Dębski, A.; Grzegorek, J.; Maziarz, W.; Kudasik, M. CO2 and CH4 sorption on carbon nanomaterials and coals–Comparative characteristics. J. Nat. Gas Sci. Eng. 2019, 72, 103003. [Google Scholar] [CrossRef]
- The National Standards Compilation Group of Peoples Republic of China. GB/T 5751–2009 Chinese Classification of Coals; Standards Press of China: Beijing, China, 2009. [Google Scholar]
- Do, D.D. Adsorption Analysis: Equilibria and Kinetics; Imperial College Press: London, UK, 1998. [Google Scholar]
- Chattaraj, S.; Mohanty, D.; Kumar, T.; Halder, G. Thermodynamics, kinetics and modeling of sorption behaviour of coalbed methane-A review. J. Unconv. Oil Gas Resour. 2016, 16, 14–33. [Google Scholar] [CrossRef]
- Yan, M.; Bai, Y.; Li, S.; Lin, H.; Yan, D.; Shu, C. Factors influencing the gas adsorption thermodynamic characteristics of low-rank coal. Fuel 2019, 248, 117–126. [Google Scholar] [CrossRef]
- Madani, S.H.; Hu, C.; Silvestre-Albero, A.; Biggs, M.J.; Rodríguez-Reinoso, F.; Pendleton, P. Pore size distributions derived from adsorption isotherms, immersion calorimetry, and isosteric heats: A comparative study. Carbon 2016, 96, 1106–1113. [Google Scholar] [CrossRef]
- Hu, B.; Cheng, Y.; He, X.; Wang, Z.; Jiang, Z.; Wang, C.; Li, W.; Wang, L. New insights into the CH4 adsorption capacity of coal based on microscopic pore properties. Fuel 2020, 262, 116675. [Google Scholar] [CrossRef]
Coal Sample | Coal Mine | Coal Seam | Geological Formation | Maceral Composition (%) | |||
---|---|---|---|---|---|---|---|
Vitrinite | Inertinite | Exinite | Mineral | ||||
CZ | Chengzhuang | 3 | Shanxi formation of the lower Permian system | 67.26 | 28.56 | – | 4.18 |
JJ | Jinjia | 18 | Longtan formation of the upper Permian system | 68.12 | 30.00 | – | 1.88 |
SS | Shoushan | 2 | Shanxi formation of the lower Permian system | 55.03 | 42.01 | – | 2.96 |
DL | Daliuta | 5 | Yan’an formation of the middle Jurassic system | 49.45 | 47.80 | 1.10 | 1.65 |
DH | Donghuai | 1 | Nadu formation of the lower Tertiary system | 72.02 | 1.19 | 2.98 | 23.81 |
Coal Sample | Ro,max (%) | Coal Type | Proximate Analysis(%) | Ultimate Analysis (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vdaf | FCad | Cad | Had | Oad | Nad | |||
CZ | 2.37 | Anthracite | 0.72 | 13.88 | 8.83 | 77.86 | 77.59 | 2.84 | 3.48 | 1.21 |
JJ | 2.04 | Lean coal | 0.54 | 15.20 | 10.54 | 75.38 | 76.63 | 3.30 | 2.89 | 1.20 |
SS | 1.35 | Coking coal | 0.77 | 12.66 | 20.93 | 68.45 | 75.80 | 3.96 | 4.23 | 1.32 |
DL | 0.76 | Fat coal | 3.62 | 5.38 | 34.99 | 59.16 | 73.30 | 4.48 | 11.72 | 1.03 |
DH | 0.58 | Lignite | 3.17 | 42.02 | 51.01 | 26.85 | 39.33 | 3.48 | 9.06 | 1.57 |
Coal Sample | SSA (m2/g) | TPV (cm3/g) | Specific Surface Area (m2/g) | Pore Volume (cm3/g) | ||||
---|---|---|---|---|---|---|---|---|
1.7–2 nm | 2–50 nm | 50–300 nm | 1.7–2 nm | 2–50 nm | 50–300 nm | |||
CZ | 72.11 | 0.1275 | 15.92 | 54.80 | 1.39 | 0.0072 | 0.0826 | 0.0377 |
JJ | 55.64 | 0.1167 | 9.87 | 44.41 | 1.36 | 0.0045 | 0.0767 | 0.0355 |
SS | 118.40 | 0.2865 | 14.64 | 99.95 | 3.81 | 0.0066 | 0.1723 | 0.1076 |
DL | 36.96 | 0.0902 | 2.80 | 33.01 | 1.15 | 0.0013 | 0.0577 | 0.0312 |
DH | 41.71 | 0.1150 | 5.46 | 34.79 | 1.46 | 0.0025 | 0.0717 | 0.0408 |
Coal Sample | SSA (m2/g) | TPV (cm3/g) | Specific Surface Area (m2/g) | Pore Volume (cm3/g) | ||
---|---|---|---|---|---|---|
0.38–0.76 nm | 0.76–1.14 nm | 0.38–0.76 nm | 0.76–1.14 nm | |||
CZ | 144.14 | 0.0443 | 117.96 | 26.18 | 0.0329 | 0.0114 |
JJ | 84.64 | 0.0265 | 67.42 | 17.22 | 0.0189 | 0.0076 |
SS | 42.60 | 0.0138 | 32.82 | 9.78 | 0.0094 | 0.0044 |
DL | 71.69 | 0.0217 | 59.82 | 11.87 | 0.0166 | 0.0051 |
DH | 54.54 | 0.0159 | 48.46 | 6.08 | 0.0133 | 0.0026 |
Coal Sample | SSA (m2/g) | TPV (cm3/g) | Specific Surface Area (m2/g) | Pore Volume (cm3/g) | ||||
---|---|---|---|---|---|---|---|---|
<2 nm | 2–50 nm | >50 nm | <2 nm | 2–50 nm | >50 nm | |||
CZ | 216.25 | 0.1718 | 160.06 | 54.80 | 1.39 | 0.0515 | 0.0826 | 0.0377 |
JJ | 140.28 | 0.1432 | 94.51 | 44.41 | 1.36 | 0.0310 | 0.0767 | 0.0355 |
SS | 161.00 | 0.3003 | 57.24 | 99.95 | 3.81 | 0.0204 | 0.1723 | 0.1076 |
DL | 108.65 | 0.1119 | 74.49 | 33.01 | 1.15 | 0.0230 | 0.0577 | 0.0312 |
DH | 96.25 | 0.1309 | 60.00 | 34.79 | 1.46 | 0.0184 | 0.0717 | 0.0408 |
Coal Sample | nm (mol/g) | b∞ (×10−4 MPa−1) | ε (kJ/mol) | R2 |
---|---|---|---|---|
CZ | 1.45 | 1.67 | 23.50 | 0.9978 |
JJ | 1.01 | 3.04 | 21.19 | 0.9989 |
SS | 0.84 | 3.58 | 18.61 | 0.9975 |
DL | 0.99 | 2.18 | 20.54 | 0.9974 |
DH | 0.81 | 1.73 | 20.91 | 0.9973 |
Coal Sample | Fitting Formula | R2 | (kJ/mol) | qst (kJ/mol) |
---|---|---|---|---|
CZ | lnp = 13.77–2826.47/T | 0.99 | −23.50 | 23.50 |
JJ | lnp = 13.61–2548.41/T | 0.99 | −21.19 | 21.19 |
SS | lnp = 13.69–2238.43/T | 0.99 | −18.61 | 18.61 |
DL | lnp = 13.97–2470.20/T | 0.99 | −20.54 | 20.54 |
DH | lnp = 14.46–2514.90/T | 0.99 | −20.91 | 20.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, S.; Zeng, Q.; Kang, J.; Guan, W.; Li, W. Effects of Pore Structure of Different Rank Coals on Methane Adsorption Heat. Processes 2021, 9, 1971. https://doi.org/10.3390/pr9111971
Li H, Wang S, Zeng Q, Kang J, Guan W, Li W. Effects of Pore Structure of Different Rank Coals on Methane Adsorption Heat. Processes. 2021; 9(11):1971. https://doi.org/10.3390/pr9111971
Chicago/Turabian StyleLi, Haijian, Shengcheng Wang, Qiang Zeng, Jianhong Kang, Weiming Guan, and Wentao Li. 2021. "Effects of Pore Structure of Different Rank Coals on Methane Adsorption Heat" Processes 9, no. 11: 1971. https://doi.org/10.3390/pr9111971
APA StyleLi, H., Wang, S., Zeng, Q., Kang, J., Guan, W., & Li, W. (2021). Effects of Pore Structure of Different Rank Coals on Methane Adsorption Heat. Processes, 9(11), 1971. https://doi.org/10.3390/pr9111971