Multi-Variable Multi-Objective Optimization Algorithm for Optimal Design of PMa-SynRM for Electric Bicycle Traction Motor
Abstract
:1. Introduction
2. Proposed Algorithm
2.1. Weighted Sum Method
2.2. Novel Crossover Strategy- Internal Dividing Point Crossover
2.3. Vector Based Pattern Search Method
2.4. Flow Chart of the IDP-GA
3. Performance Validation
4. Optimal Design of PMa-SynRM for Electric Bicycle Traction Motor
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Hu, J.; Chen, F.; Liu, Z.Y.; He, Z. A New-Variable-Coil-Structure-Based IPT System with Load-Independent Constant Output Current or Voltage for Charging Electric Bicycles. IEEE Trans. Power Electron. 2018, 33, 8226–8230. [Google Scholar] [CrossRef]
- Hsu, R.C.; Liu, C.; Chan, D. A Reinforcement-Learning-Based Assisted Power Management with QoR Provisioning for Human–Electric Hybrid Bicycle. IEEE Trans. Ind. Electron. 2012, 59, 3350–3359. [Google Scholar] [CrossRef]
- Lim, D.; Cho, Y.; Ro, J.; Jung, S.; Jung, H. Optimal Design of an Axial Flux Permanent Magnet Synchronous Motor for the Electric Bicycle. IEEE Trans. Magn. 2016, 52, 8201204. [Google Scholar] [CrossRef]
- Wang, L.; Li, C.; Chen, M.Z.Q.; Wang, Q.; Tao, F. Connectivity-Based Accessibility for Public Bicycle Sharing Systems. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1521–1532. [Google Scholar] [CrossRef]
- Lin, J.; Schofield, N.; Emadi, A. External-Rotor 6-10 Switched Reluctance Motor for an Electric Bicycle. IEEE Trans. Transp. Electrif. 2015, 1, 348–356. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Liu, G.; Chen, Q.; Ji, J.; Zhao, W. Torque Calculation of Stator Modular PMa-SynRM with Asymmetric Design for Electric Vehicles. IEEE Trans. Transp. Electrif. 2021, 7, 202–213. [Google Scholar] [CrossRef]
- Joo, K.; Kim, I.; Lee, J.; Go, S. Robust Speed Sensorless Control to Estimated Error for PMa-SynRM. IEEE Trans. Magn. 2017, 53, 8102604. [Google Scholar] [CrossRef]
- Jung, D.-H.; Kwak, Y.; Lee, J.; Jin, C. Study on the Optimal Design of PMa-SynRM Loading Ratio for Achievement of Ultrapremium Efficiency. IEEE Trans. Magn. 2017, 53, 8001904. [Google Scholar] [CrossRef]
- Amin, M.; Aziz, G.A.A. Hybrid Adopted Materials in Permanent Magnet-Assisted Synchronous Reluctance Motor with Rotating Losses Computation. IEEE Trans. Magn. 2019, 55, 8103305. [Google Scholar] [CrossRef]
- Kong, Y.; Lin, M.; Yin, M.; Hao, L. Rotor Structure on Reducing Demagnetization of Magnet and Torque Ripple in a PMa-synRM With Ferrite Permanent Magnet. IEEE Trans. Magn. 2018, 54, 8108705. [Google Scholar] [CrossRef]
- Son, J.-C.; Kang, Y.-R.; Lim, D.-K. Optimal Design of IPMSM for FCEV Using Novel Immune Algorithm Combined with Steepest Descent Method. Energies 2020, 13, 3395. [Google Scholar] [CrossRef]
- Kang, Y.; Son, J.; Lim, D. Optimal Design of IPMSM for Fuel Cell Electric Vehicles Using Autotuning Elliptical Niching Genetic Algorithm. IEEE Access 2020, 8, 117405–117412. [Google Scholar] [CrossRef]
- Son, J.-C.; Ahn, J.-M.; Lim, J.; Lim, D.-K. Optimal Design of PMa-SynRM for Electric Vehicles Exploiting Adaptive-Sampling Kriging Algorithm. IEEE Access 2021, 9, 41174–41183. [Google Scholar] [CrossRef]
- Jiacheng, L.; Lei, L. A Hybrid Genetic Algorithm Based on Information Entropy and Game Theory. IEEE Access 2020, 8, 36602–36611. [Google Scholar] [CrossRef]
- Lee, K.; Oh, H.; Jung, S.; Chung, Y. Moving Least Square-Based Hybrid Genetic Algorithm for Optimal Design of W-Band Dual-Reflector Antenna. IEEE Trans. Magn. 2019, 55, 9400404. [Google Scholar] [CrossRef]
- Ryu, N.; Lim, S.; Min, S.; Izui, K.; Nishiwaki, S. Multi-Objective Optimization of Magnetic Actuator Design Using Adaptive Weight Determination Scheme. IEEE Trans. Magn. 2017, 53, 7205104. [Google Scholar] [CrossRef]
- Choi, K.; Jang, D.; Kang, S.; Lee, J.; Chung, T.; Kim, H. Hybrid Algorithm Combing Genetic Algorithm with Evolution Strategy for Antenna Design. IEEE Trans. Magn. 2016, 52, 7209004. [Google Scholar] [CrossRef]
- Davey, K.R. Latin Hypercube Sampling and Pattern Search in Magnetic Field Optimization Problems. IEEE Trans. Magn. 2008, 44, 974–977. [Google Scholar] [CrossRef] [Green Version]
- JMAG-Designer. Available online: https://www.jmag-international.com/products/jmag-designer/ (accessed on 28 September 2021).
- Torregrossa, D.; Peyraut, F.; Cirrincione, M.; Espanet, C.; Cassat, A.; Miraoui, A. A New Passive Methodology for Reducing the Noise in Electrical Machines: Impact of Some Parameters on the Modal Analysis. IEEE Trans. Ind. Appl. 2010, 46, 1899–1907. [Google Scholar] [CrossRef]
- Kawase, Y.; Yamaguchi, T.; Tu, Z.; Toida, N.; Minoshima, N.; Hashimoto, K. Effects of Skew Angle of Rotor in Squirrel-Cage Induction Motor on Torque and Loss Characteristics. IEEE Trans. Magn. 2009, 45, 1700–1703. [Google Scholar] [CrossRef]
- Lazari, P.; Wang, J.; Sen, B. 3-D Effects of Rotor Step-Skews in Permanent Magnet-Assisted Synchronous Reluctance Machines. IEEE Trans. Magn. 2015, 51, 8112704. [Google Scholar] [CrossRef]
- Bao, X.; Fang, J.; Di, C.; Xu, S. A Novel Computational Method of Skewing Leakage Reactance for a Doubly Skewed Rotor Induction Motor. IEEE Trans. Energy Convers. 2018, 33, 2174–2182. [Google Scholar] [CrossRef]
- Lim, D.; Woo, D.; Yeo, H.; Jung, S.; Ro, J.; Jung, H. A Novel Surrogate-Assisted Multi-Objective Optimization Algorithm for an Electromagnetic Machine Design. IEEE Trans. Magn. 2015, 51, 8200804. [Google Scholar] [CrossRef]
- Ahn, J.-M.; Baek, M.-K.; Park, S.-H.; Lim, D.-K. Optimal Design of IPMSM for EV Using Subdivided Kriging Multi-Objective Optimization. Processes 2021, 9, 1490. [Google Scholar] [CrossRef]
Test Function 1 [2 Variables] | Function Call [Average Value] | Convergence Ratio [%] |
GA | 427.92 | 98.64 |
IDP-GA | 187.19 | 99.69 |
Test Function 2 [3 Variables] | Function Call [Average Value] | Convergence Ratio [%] |
GA | 2410.00 | 75.45 |
IDP-GA | 727.00 | 92.05 |
Pole/slot | 8/12 |
Stator outer diameter | 120 [mm] |
Stacking length | 20 [mm] |
Air gap | 0.5 [mm] |
Stator and rotor core material | POSCO 35PN230 |
Permanent magnet material | Ferrite 12G (Brmin: 0.44 [T]) |
Rated output/torque | 350 [W]/1.114 [Nm] |
Rated/maximum speed | 3000/10,000 [RPM] |
Design Variable | Range |
---|---|
α1 | 0.92~0.98 |
α2 | 0.65~0.83 |
θ [°] | 40~52 |
length [mm] | 6.0~7.5 |
slot open [mm] | 1~10 |
Model | Initial Model | Optimum Model |
---|---|---|
α1 | 0.93 | 0.96 |
α2 | 0.66 | 0.81 |
θ [°] | 51.0 | 45.0 |
length [mm] | 7.4 | 6.9 |
slot open [mm] | 9.7 | 3.7 |
Average torque [Nm] | 1.057 | 1.143 |
Torque ripple [%] | 50.73 | 13.48 |
Cogging torque [Nm] | 0.0407 | 0.0257 |
B-EMF THD [%] | 9.34 | 4.43 |
Young’s modulus (Core/Ferrite) | 210/190 [GPa] |
Poisson’s ratio (Core/Ferrite) | 0.3/0.35 |
Density (Core/Ferrite) | 7850/5100 [kg/m3] |
Rotation speed (Rated/Maximum) | 3000/10,000 [RPM] |
Yield stress of the core | 450 [MPa] |
Rotation Speed | Maximum Von Mises Stress Value |
---|---|
3000 [RPM] | 12.48 [MPa] |
10,000 [RPM] | 138.72 [MPa] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, J.-C.; Yi, K.-P.; Lim, D.-K. Multi-Variable Multi-Objective Optimization Algorithm for Optimal Design of PMa-SynRM for Electric Bicycle Traction Motor. Processes 2021, 9, 1901. https://doi.org/10.3390/pr9111901
Son J-C, Yi K-P, Lim D-K. Multi-Variable Multi-Objective Optimization Algorithm for Optimal Design of PMa-SynRM for Electric Bicycle Traction Motor. Processes. 2021; 9(11):1901. https://doi.org/10.3390/pr9111901
Chicago/Turabian StyleSon, Ji-Chang, Kyung-Pyo Yi, and Dong-Kuk Lim. 2021. "Multi-Variable Multi-Objective Optimization Algorithm for Optimal Design of PMa-SynRM for Electric Bicycle Traction Motor" Processes 9, no. 11: 1901. https://doi.org/10.3390/pr9111901
APA StyleSon, J.-C., Yi, K.-P., & Lim, D.-K. (2021). Multi-Variable Multi-Objective Optimization Algorithm for Optimal Design of PMa-SynRM for Electric Bicycle Traction Motor. Processes, 9(11), 1901. https://doi.org/10.3390/pr9111901