Environmental and Sustainability Analysis of a Supercritical Carbon Dioxide-Assisted Process for Pharmaceutical Applications
Abstract
:1. Introduction
2. Process Description
2.1. Apparatus
2.2. Materials and Procedures
3. Methodology
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S.K. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2012, 2, 2. [Google Scholar]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, Y. Drug delivery systems. In Photochemistry for Biomedical Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 231–275. [Google Scholar]
- Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New developments in liposomal drug delivery. Chem. Rev. 2015, 115, 10938–10966. [Google Scholar] [CrossRef] [PubMed]
- Ozer, A.Y. Alternative applications for drug delivery: Nasal and pulmonary routes. In Nanomaterials and Nanosystems for Biomedical Applications; Springer: Berlin/Heidelberg, Germany, 2007; pp. 99–112. [Google Scholar]
- Van Tran, V.; Moon, J.-Y.; Lee, Y.-C. Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. J. Control. Release 2019, 300, 114–140. [Google Scholar] [CrossRef] [PubMed]
- Taylor, T.M.; Weiss, J.; Davidson, P.M.; Bruce, B.D. Liposomal nanocapsules in food science and agriculture. Crit. Rev. Food Sci. Nutr. 2005, 45, 587–605. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, G. Global liposome research in the period of 1995–2014: A bibliometric analysis. Scientometrics 2015, 105, 231–248. [Google Scholar] [CrossRef]
- Radhika, P.R.; Singh, R.B.M.; Sivakumar, T. Nutraceuticals: An area of tremendous scope. Int. J. Res. 2011, 2, 410–415. [Google Scholar]
- Aditya, N.; Espinosa, Y.G.; Norton, I.T. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application. Biotechnol. Adv. 2017, 35, 450–457. [Google Scholar] [CrossRef] [Green Version]
- Crommelin, D.J.; Storm, G. Liposomes: From the bench to the bed. J. Liposome Res. 2003, 13, 33–36. [Google Scholar] [CrossRef]
- Singh, H.; Thompson, A.; Liu, W.; Corredig, M. Liposomes as food ingredients and nutraceutical delivery systems. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2012; pp. 287–318. [Google Scholar]
- Mozafari, M.R. Liposomes: An overview of manufacturing techniques. Cell. Mol. Biol. Lett. 2005, 10, 711. [Google Scholar]
- Trucillo, P.; Campardelli, R.; Reverchon, E. Supercritical CO2 assisted liposomes formation: Optimization of the lipidic layer for an efficient hydrophilic drug loading. J. CO2 Util. 2017, 18, 181–188. [Google Scholar] [CrossRef]
- Trucillo, P.; Campardelli, R.; Aliakbarian, B.; Perego, P.; Reverchon, E. Supercritical assisted process for the encapsulation of olive pomace extract into liposomes. J. Supercrit. Fluids 2018, 135, 152–159. [Google Scholar] [CrossRef]
- Trucillo, P.; Campardelli, R.; Reverchon, E. A versatile supercritical assisted process for the one-shot production of liposomes. J. Supercrit. Fluids 2019, 146, 136–143. [Google Scholar] [CrossRef]
- Trucillo, P.; Campardelli, R.; Scognamiglio, M.; Reverchon, E. Control of liposomes diameter at micrometric and nanometric level using a supercritical assisted technique. J. 2 Util. 2019, 32, 119–127. [Google Scholar] [CrossRef]
- Dua, J.; Rana, A.; Bhandari, A. Liposome: Methods of preparation and applications. Int. J. Pharm. Stud. Res. 2012, 3, 14–20. [Google Scholar]
- Pons, M.; Foradada, M.; Estelrich, J. Liposomes obtained by the ethanol injection method. Int. J. Pharm. 1993, 95, 51–56. [Google Scholar] [CrossRef]
- Laouini, A.; Jaafar-Maalej, C.; Limayem-Blouza, I.; Sfar, S.; Charcosset, C.; Fessi, H. Preparation, characterization and applications of liposomes: State of the art. J. Colloid Sci. Biotechnol. 2012, 1, 147–168. [Google Scholar] [CrossRef]
- Meure, L.A.; Foster, N.R.; Dehghani, F. Conventional and dense gas techniques for the production of liposomes: A review. AAPS PharmSciTech 2008, 9, 798. [Google Scholar] [CrossRef] [Green Version]
- Otake, K.; Shimomura, T.; Goto, T.; Imura, T.; Furuya, T.; Yoda, S.; Takebayashi, Y.; Sakai, H.; Abe, M. Preparation of liposomes using an improved supercritical reverse phase evaporation method. Langmuir 2006, 22, 2543–2550. [Google Scholar] [CrossRef]
- Deamer, D.W. From “banghasomes” to liposomes: A memoir of Alec Bangham, 1921–2010. FASEB J. 2010, 24, 1308–1310. [Google Scholar] [CrossRef]
- Liu, W.; Ye, A.; Liu, W.; Liu, C.; Singh, H. Stability during in vitro digestion of lactoferrin-loaded liposomes prepared from milk fat globule membrane-derived phospholipids. J. Dairy Sci. 2013, 96, 2061–2070. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Liang, Q.; Wang, J.; Luo, G. Microfluidic Fabrication of Liposomes as Drug Carriers. Prog. Chem. 2018, 30, 1734–1748. [Google Scholar]
- Grimaldi, N.; Andrade, F.; Segovia, N.; Ferrer-Tasies, L.; Sala, S.; Veciana, J.; Ventosa, N. Lipid-based nanovesicles for nanomedicine. Chem. Soc. Rev. 2016, 45, 6520–6545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mufamadi, M.S.; Pillay, V.; Choonara, Y.E.; Du Toit, L.C.; Modi, G.; Naidoo, D.; Ndesendo, V.M. A review on composite liposomal technologies for specialized drug delivery. J. Drug Deliv. 2011, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P.; Guan, J.; Lu, D.; Wang, P.G.; Lee, L.J.; Lee, R.J. A facile microfluidic method for production of liposomes. Anticancer Res. 2008, 28, 943–947. [Google Scholar]
- William, B.; Noémie, P.; Brigitte, E.; Géraldine, P. Supercritical fluid methods: An alternative to conventional methods to prepare liposomes. Chem. Eng. J. 2020, 383, 123106. [Google Scholar] [CrossRef]
- Meure, L.A.; Knott, R.; Foster, N.R.; Dehghani, F. The depressurization of an expanded solution into aqueous media for the bulk production of liposomes. Langmuir 2009, 25, 326–337. [Google Scholar] [CrossRef]
- Zhao, L.; Temelli, F. Preparation of liposomes using a modified supercritical process via depressurization of liquid phase. J. Supercrit. Fluids 2015, 100, 110–120. [Google Scholar] [CrossRef]
- Huang, Z.; Li, X.; Zhang, T.; Song, Y.; She, Z.; Li, J.; Deng, Y. Progress involving new techniques for liposome preparation. Asian J. Pharm. Sci. 2014, 9, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Beh, C.C.; Mammucari, R.; Foster, N.R. Lipids-based drug carrier systems by dense gas technology: A review. Chem. Eng. J. 2012, 188, 1–14. [Google Scholar] [CrossRef]
- Cortesi, R.; Esposito, E.; Gambarin, S.; Telloli, P.; Menegatti, E.; Nastruzzi, C. Preparation of liposomes by reverse-phase evaporation using alternative organic solvents. J. Microencapsul. 1999, 16, 251–256. [Google Scholar] [CrossRef]
- Trucillo, P.; Campardelli, R.; Iuorio, S.; De Stefanis, P.; Reverchon, E. Economic analysis of a new business for liposome manufacturing using a high-pressure system. Processes 2020, 8, 1604. [Google Scholar] [CrossRef]
- González-García, S.; Dias, A.C.; Clermidy, S.; Benoist, A.; Bellon Maurel, V.; Gasol, C.M.; Gabarrell, X.; Arroja, L. Comparative environmental and energy profiles of potential bioenergy production chains in Southern Europe. J. Clean. Prod. 2014, 76, 42–54. [Google Scholar] [CrossRef]
- De Marco, I.; Riemma, S.; Iannone, R. Life cycle assessment of supercritical CO2 extraction of caffeine from coffee beans. J. Supercrit. Fluids 2018, 133, 393–400. [Google Scholar] [CrossRef]
- Berlin, J. Environmental life cycle assessment (LCA) of Swedish semi-hard cheese. Int. Dairy J. 2002, 12, 939–953. [Google Scholar] [CrossRef]
- Biswas, W.K.; Naude, G. A life cycle assessment of processed meat products supplied to Barrow Island: A Western Australian case study. J. Food Eng. 2016, 180, 48–59. [Google Scholar] [CrossRef]
- De Marco, I.; Riemma, S.; Iannone, R. Uncertainty of input parameters and sensitivity analysis in life cycle assessment: An Italian processed tomato product. J. Clean. Prod. 2018, 177, 315–325. [Google Scholar] [CrossRef]
- Gazulla, C.; Raugei, M.; Fullana-I-Palmer, P. Taking a life cycle look at crianza wine production in Spain: Where are the bottlenecks? Int. J. Life Cycle Assess. 2010, 15, 330–337. [Google Scholar] [CrossRef]
- De Marco, I.; Riemma, S.; Iannone, R. Life cycle assessment of supercritical impregnation: Starch aerogel + a-tocopherol tablets. J. Supercrit. Fluids 2019, 143, 305–312. [Google Scholar] [CrossRef]
- Emara, Y.; Lehmann, A.; Siegert, M.W.; Finkbeiner, M. Modeling pharmaceutical emissions and their toxicity-related effects in life cycle assessment (LCA): A review. Integr. Environ. Assess. Manag. 2019, 15, 6–18. [Google Scholar] [CrossRef] [Green Version]
- Wernet, G.; Conradt, S.; Isenring, H.P.; Jiménez-González, C.; Hungerbühler, K. Life cycle assessment of fine chemical production: A case study of pharmaceutical synthesis. Int. J. Life Cycle Assess. 2010, 15, 294–303. [Google Scholar] [CrossRef]
- Guilbot, J.; Kerverdo, S.; Milius, A.; Pomrehn, F. Life cycle assessment of surfactants: The case of an alkyl polyglucoside used as a self emulsifier in cosmetics. Green Chem. 2013, 15, 3337–3354. [Google Scholar] [CrossRef]
- Lassaux, S.; Renzoni, R.; Germain, A. Life cycle assessment of water from the pumping station to the wastewater treatment plant. Int. J. Life Cycle Assess. 2007, 12, 118–126. [Google Scholar]
- Mata, T.M.; Martins, A.A.; Neto, B.; Martins, M.L.; Salcedo, R.L.R.; Costa, C.A.V. Lca tool for sustainability evaluations in the pharmaceutical industry. Chem. Eng. Trans. 2012, 26, 261–266. [Google Scholar]
- Emara, Y.; Siegert, M.-W.; Lehmann, A.; Finkbeiner, M. Life cycle management in the pharmaceutical industry using an applicable and robust LCA-based environmental sustainability assessment approach. In Designing Sustainable Technologies, Products and Policies; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany, 2018; pp. 79–88. [Google Scholar]
- Raymond, M.J.; Slater, C.S.; Savelski, M.J. LCA approach to the analysis of solvent waste issues in the pharmaceutical industry. Green Chem. 2010, 12, 1826–1834. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, M.; Chen, Z.; Han, X.; Yu, F.; Li, Z.; Xie, X.; Han, C.; Yu, L.; Yang, Y. Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma. Drug Deliv. 2017, 24, 1045–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; De Schryver, A.; Struijs, J.; van Zelm, R. ReCiPe 2008, A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level. First Edition. Report I: Characterization. 2009. Available online: http://www.lcia-recipe.net (accessed on 10 September 2021).
- Ruiz-Mercado, G.J.; Smith, R.L.; Gonzalez, M.A. Sustainability indicators for chemical processes: I. Taxonomy. Ind. Eng. Chem. Res. 2012, 51, 2309–2328. [Google Scholar] [CrossRef]
- Ruiz-Mercado, G.J.; Smith, R.L.; Gonzalez, M.A. Sustainability indicators for chemical processes: II. Data needs. Ind. Eng. Chem. Res. 2012, 51, 2329–2353. [Google Scholar] [CrossRef]
- GlaxoSmithKline plc. Annual Report 2019. Available online: www.gsk.com/annualreport (accessed on 1 September 2021).
- Air Products. 2010 Sustainability Report. Available online: http://www.airproducts.com/responsibility/2010AnnualReport.htm (accessed on 1 September 2021).
- Constable, D.J.; Curzons, A.D.; Cunningham, V.L. Metrics to ‘green’chemistry—Which are the best? Green Chem. 2002, 4, 521–527. [Google Scholar] [CrossRef]
- ICIS Chemical Business. ICIS Pricing Glycerine Report. Available online: http://www.icispricing.com/il_shared/Samples/SubPage170.asp (accessed on 1 September 2021).
- Sustainability Reporting 2009. Available online: http://www.bp.com/subsection.do?categoryID=9032624&contentID=7061085 (accessed on 1 September 2021).
Process | Characteristics and Details |
---|---|
Energy supply to facility | Italian energy mix medium voltage |
Production | |
Pressurization | t1 = 0.25 h; carbon dioxide and ethanol supply; energy supply |
Operating conditions stabilization | T = 40 °C; P = 100 bar; t2 = 0.2 h; |
carbon dioxide and ethanol supply; energy supply | |
Injection | T = 40 °C; P = 100 bar; t3 = 1 h; carbon dioxide and ethanol supply; water solution; energy supply |
Separation | T = 30 °C; P = 10 bar; t4 = 1 h |
Stocking | T = 4 °C; P = 1 bar; t5 = 0.5 h |
Carbon dioxide supply to facility | Transport by truck, 28 t from Sant’Antimo (Italy) To the University of Salerno (Italy), distance = 67 km |
Reagents supply to facility | Transport by truck, 28 t from Milan to the University of Salerno (Italy), distance = 800 km |
Formula | Best | Worst |
---|---|---|
No CO2 released | All CO2 released | |
No CO2 released | All CO2 released | |
Min. theoretical energy (Gibbs) | 5.85 × 1011 KJ/Kg [54] | |
0 | 2.294 × 109 KJ/EUR [55] | |
0 | 100% | |
100% | 0% | |
Total material consumption = Total mass input * | 2.5 × 10−2 Kg | 1 Kg |
1 | 40 Kg/Kg [56] | |
0 | 52 Kg/EUR [57] | |
0 | 2.95 m3/kg [58] | |
0 | 1.55 m3/EUR [58] | |
1 | 0 Kg/Kg |
Indicator | Description of the Parameter | Value | Unit |
---|---|---|---|
Global warming potential | Total mass of CO2 released | 1.06 × 10−2 | Kg |
Mass of product | 2.50 × 10−2 | Kg | |
Ratio | 43% | Kg/Kg | |
Global warming intensity | total mass of CO2 released | 1.06 × 10−2 | Kg |
sales revenue | 27.5 | EUR | |
Ratio | 3.9 × 10−4 | Kg/EUR | |
Specific energy intensity | total energy consumed in the process | 34.7 | KJ |
mass of product | 2.50 × 10−2 | Kg | |
Ratio | 1389.20 | KJ/Kg | |
Energy intensity | total energy consumed in the process | 34.7 | KJ |
sales revenue | 27.5 | EUR | |
Ratio | 1.2629 | KJ/EUR | |
Specific liquid waste volume | total volume of liquid rated as waste (ethanol) | 6.58 × 10−3 | Kg |
Mass of product | 2.50 × 10−2 | Kg | |
Ratio | 26% | ||
Reaction mass efficiency | Mass of product | 2.50 × 10−2 | Kg |
Total mass of reagents | 3.42 × 10−2 | Kg | |
Ratio | 73% | ||
Total material consumption | total mass input | 3.424 × 10−2 | Kg |
Mass intensity | total mass input | 3.42 × 10−2 | Kg |
mass of product | 2.50 × 10−2 | Kg | |
Ratio | 1.370 | Kg/Kg | |
Value mass intensity | Total mass input | 3.42 × 10−2 | Kg |
sales venue | 27.5 | EUR | |
Ratio | 1.25 × 10−3 | Kg/EUR | |
Fractional water consumption | volume of fresh water consumed | 2.50 × 10−2 | m3 |
mass of product | 2.50 × 10−2 | Kg | |
Ratio | 1.0000 | m3/Kg | |
water intensity | volume of fresh water consumed | 2.50 × 10−2 | m3 |
sales venue | 27.5 | EUR | |
Ratio | 9.09 × 10−4 | m3/EUR | |
Recycled material fraction | Recycled mass input | 0 | Kg |
total mass input | 3.42 × 10−2 | Kg | |
Ratio | 0 | Kg/Kg |
Before Optimization | After Optimization | |
---|---|---|
Global warming potential | 57% | 96% |
Global warming intensity | 100% | 100% |
Specific energy intensity | 100% | 100% |
Energy intensity | 100% | 100% |
Specific liquid waste volume | 74% | 97% |
Reaction mass efficiency | 73% | 85% |
Total material consumption | 99% | 99% |
Mass intensity | 99% | 99% |
Value mass intensity | 100% | 100% |
Fractional water consumption | 66% | 83% |
Water intensity | 100% | 100% |
Recycled material fraction | 0% | 45% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trucillo, P.; Campardelli, R.; De Marco, I. Environmental and Sustainability Analysis of a Supercritical Carbon Dioxide-Assisted Process for Pharmaceutical Applications. Processes 2021, 9, 1788. https://doi.org/10.3390/pr9101788
Trucillo P, Campardelli R, De Marco I. Environmental and Sustainability Analysis of a Supercritical Carbon Dioxide-Assisted Process for Pharmaceutical Applications. Processes. 2021; 9(10):1788. https://doi.org/10.3390/pr9101788
Chicago/Turabian StyleTrucillo, Paolo, Roberta Campardelli, and Iolanda De Marco. 2021. "Environmental and Sustainability Analysis of a Supercritical Carbon Dioxide-Assisted Process for Pharmaceutical Applications" Processes 9, no. 10: 1788. https://doi.org/10.3390/pr9101788
APA StyleTrucillo, P., Campardelli, R., & De Marco, I. (2021). Environmental and Sustainability Analysis of a Supercritical Carbon Dioxide-Assisted Process for Pharmaceutical Applications. Processes, 9(10), 1788. https://doi.org/10.3390/pr9101788