Recent Advances in Feedstock and Lipase Research and Development towards Commercialization of Enzymatic Biodiesel
Abstract
:1. Introduction
2. Feedstock for Biodiesel Production
2.1. First Generation Feedstock
2.2. Second Generation Feedstock
2.3. Third Generation Feedstock
2.4. Fourth Generation Feedstocks
3. Lipases for Biodiesel Production
3.1. Lipase Activity and Specificity
3.2. Lipase Thermostability and Half-Life
3.3. Lipase Reusability
3.4. Lipase-Catalyzed Biodiesel Production
4. Lipase and Biodiesel Markets
4.1. Lipase Market
4.2. Biodiesel Market
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fukuda, H.; Kondo, A.; Noda, H. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 2001, 92, 405–416. [Google Scholar] [CrossRef]
- Abbaszaadeh, A.; Ghobadian, B.; Omidkhah, M.R.; Najafi, G. Current biodiesel production technologies: A comparative review. Energy Convers. Manag. 2012, 63, 138–148. [Google Scholar] [CrossRef]
- De Oliveira, F.C.; Coelho, S.T. History, evolution, and environmental impact of biodiesel in Brazil: A review. Renew. Sustain. Energy Rev. 2017, 75, 168–179. [Google Scholar] [CrossRef]
- Alberts, G.; Ayuso, M.; Bauen, A.; Boshell, F.; Chudziak, C.; Gebauer; Peer, J.; German, L.; Kaltschmitt; Martin; et al. Inovation Outlook: Advanced Liquid Biofuels; International Renewable Energy Agency (IRENA): New York, NY, USA, 2016; ISBN 978-92-95111-52-3. [Google Scholar]
- Jain, S.K.; Kumar, S.; Chaube, A. Technical sustainability of biodiesel and its blends with diesel in ci engines: A review. Int. J. Chem. Eng. Appl. 2011, 2, 101–109. [Google Scholar]
- Hasan, M.M.; Rahman, M.M. Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review. Renew. Sustain. Energy Rev. 2017, 74, 938–948. [Google Scholar] [CrossRef] [Green Version]
- MIT. MIT Energy Initiative Symposium on Prospects for Bi-Fuel and Flex-Fuel Light-Duty Vehicles; Massachusetts Institute of Technology: Cambridge, MA, USA, 2012. [Google Scholar]
- Gebremariam, S.N.; Marchetti, J.M. Economics of biodiesel production: Review. Energy Convers. Manag. 2018, 168, 74–84. [Google Scholar] [CrossRef]
- Christopher, L.P.; Kumar, H. Clean and Sustainable Biodiesel Production. In Handbook of Clean Energy Systems; Yan, J., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2015; pp. 1–16. [Google Scholar]
- Lim, S.; Teong, L.K. Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview. Renew. Sustain. Energy Rev. 2010, 14, 938–954. [Google Scholar] [CrossRef]
- Mofijur, M.; Mahlia, T.M.I.; Silitonga, A.S.; Ong, H.C.; Silakhori, M.; Hasan, M.H.; Putra, N.; Ashrafur Rahman, S.M. Phase change materials (PCM) for solar energy usages and storage: An overview. Energies 2019, 12, 3167. [Google Scholar] [CrossRef] [Green Version]
- Mujtaba, M.A.; Muk Cho, H.; Masjuki, H.H.; Kalam, M.A.; Ong, H.C.; Gul, M.; Harith, M.H.; Yusoff, M.N.A.M. Critical review on sesame seed oil and its methyl ester on cold flow and oxidation stability. Energy Rep. 2020, 6, 40–54. [Google Scholar] [CrossRef]
- Ishola, F.; Adelekan, D.; Mamudu, A.; Abodunrin, T.; Aworinde, A.; Olatunji, O.; Akinlabi, S. Biodiesel production from palm olein: A sustainable bioresource for Nigeria. Heliyon 2020, 6, e03725. [Google Scholar] [CrossRef]
- Mitrović, P.M.; Stamenković, O.S.; Banković-Ilić, I.; Djalović, I.G.; Nježić, Z.B.; Farooq, M.; Siddique, K.H.M.; Veljković, V.B. White mustard (Sinapis alba L.) oil in biodiesel production: A review. Front. Plant Sci. 2020, 11, 299. [Google Scholar] [CrossRef]
- Yusoff, M.N.A.M.; Zulkifli, N.W.M.; Sukiman, N.L.; Chyuan, O.H.; Hassan, M.H.; Hasnul, M.H.; Zulkifli, M.S.A.; Abbas, M.M.; Zakaria, M.Z. Sustainability of Palm Biodiesel in Transportation: A Review on Biofuel Standard, Policy and International Collaboration between Malaysia and Colombia. Bioenergy Res. 2021, 14, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Su, J.J.; Chou, Y.C. Biodiesel production by acid methanolysis of slaughterhouse sludge cake. Animals 2019, 9, 1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okoro, O.V.; Sun, Z.; Birch, J. Meat processing waste as a potential feedstock for biochemicals and biofuels—A review of possible conversion technologies. J. Clean. Prod. 2017, 142, 1583–1608. [Google Scholar] [CrossRef]
- Chua, S.Y.; Periasamy, L.A.; Goh, C.M.H.; Tan, Y.H.; Mubarak, N.M.; Kansedo, J.; Khalid, M.; Walvekar, R.; Abdullah, E.C. Biodiesel synthesis using natural solid catalyst derived from biomass waste—A review. J. Ind. Eng. Chem. 2020, 81, 41–60. [Google Scholar] [CrossRef]
- Demirbas, A. Production of biodiesel fuels from linseed oil using methanol and ethanol in non-catalytic SCF conditions. Biomass Bioenergy 2009, 33, 113–118. [Google Scholar] [CrossRef]
- Dabi, M.; Saha, U.K. Application potential of vegetable oils as alternative to diesel fuels in compression ignition engines: A review. J. Energy Inst. 2019, 92, 1710–1726. [Google Scholar] [CrossRef]
- Ramli, A.; Farooq, M.; Naeem, A.; Khan, S.; Hummayun, M.; Iqbal, A.; Ahmed, S.; Shah, L.A. Bifunctional Heterogeneous Catalysts for Biodiesel Production using Low Cost Feedstocks: A Future Perspective. In Frontiers in Bioenergy and Biofuels; Jacob-Lopes, E., Zepka, L.Q., Eds.; IntechOpen Limited: London, UK, 2017; pp. 285–308. [Google Scholar]
- Shah, S.; Sharma, S.; Gupta, M.N. Enzymatic transesterification for biodiesel production. Indian J. Biochem. Biophys. 2003, 40, 392–399. [Google Scholar]
- Christopher, L.P.; Kumar, H.; Zambare, V.P. Enzymatic biodiesel: Challenges and opportunities. Appl. Energy 2014, 119, 497–520. [Google Scholar] [CrossRef]
- Ondul, E.; Dizge, N.; Keskinler, B.; Albayrak, N. Biocatalytic Production of Biodiesel from Vegetable Oils. In Biofuels-Status and Perspective; IntechOpen Limited: London, UK, 2015. [Google Scholar]
- Karmakar, B.; Halder, G. Progress and future of biodiesel synthesis: Advancements in oil extraction and conversion technologies. Energy Convers. Manag. 2019, 182, 307–339. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Mimi Sakinah, A.M.; Zularisam, A.W.; Pandey, A.; Vo, D.-V.N. Technological perspectives for utilisation of waste glycerol for the production of biofuels: A review. Environ. Technol. Innov. 2021, 24, 101902. [Google Scholar] [CrossRef]
- Gautam, R.; Vinu, R. Reaction engineering and kinetics of algae conversion to biofuels and chemicals via pyrolysis and hydrothermal liquefaction. React. Chem. Eng. 2020, 5, 1320–1373. [Google Scholar] [CrossRef]
- Hama, S.; Kondo, A. Enzymatic biodiesel production: An overview of potential feedstocks and process development. Bioresour. Technol. 2013, 135, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Chozhavendhan, S.; Vijay Pradhap Singh, M.; Fransila, B.; Praveen Kumar, R.; Karthiga Devi, G. A review on influencing parameters of biodiesel production and purification processes. Curr. Res. Green Sustain. Chem. 2020, 1–2, 1–6. [Google Scholar] [CrossRef]
- Zhang, H.; Han, L.; Dong, H. An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: Experimental and modeling studies. Renew. Sustain. Energy Rev. 2021, 140, 110758. [Google Scholar] [CrossRef]
- Moser, B.R. Biodiesel production, properties, and feedstocks. In Vitro Cell. Dev. Biol. Plant 2009, 45, 229–266. [Google Scholar] [CrossRef]
- Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. USA 2006, 103, 11206–11210. [Google Scholar] [CrossRef] [Green Version]
- Varela, V.J.; Burgués, C.; Rösch, C. Acceptability of genetically engineered algae biofuels in Europe: Opinions of experts and stakeholders. Biotechnol. Biofuels 2020, 13, 92. [Google Scholar] [CrossRef]
- Yu, A.; Zhao, Y.; Li, J.; Li, S.; Pang, Y.; Zhao, Y.; Zhang, C.; Xiao, D. Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica. Microbiologyopen 2020, 9, e1051. [Google Scholar] [CrossRef]
- Rahman, Z.; Sung, B.H.; Nawab, J.; Siddiqui, M.F.; Ali, A.; Geraldi, A.; Kim, S.C. Enhanced production of fatty acid ethyl ester with engineered fabhdg operon in escherichia coli. Microorganisms 2019, 7, 552. [Google Scholar] [CrossRef] [Green Version]
- Wahlen, B.D.; Morgan, M.R.; McCurdy, A.T.; Willis, R.M.; Morgan, M.D.; Dye, D.J.; Bugbee, B.; Wood, B.D.; Seefeldt, L.C. Biodiesel from microalgae, yeast, and bacteria: Engine performance and exhaust emissions. Energy Fuels 2013, 27, 220–228. [Google Scholar] [CrossRef]
- De Paola, M.G.; Mazza, I.; Paletta, R.; Lopresto, C.G.; Calabrò, V. Small-Scale Biodiesel Production Plants—An Overview. Energies 2021, 14, 1901. [Google Scholar] [CrossRef]
- Rao, K.S.; Ramakrishna, A. Cost Estimation Analysis of Biodiesel Production from Waste Chicken Fat. Int. J. Appl. Eng. Res. 2015, 10, 8863–8870. [Google Scholar]
- Joelsson, E.; Erdei, B.; Galbe, M.; Wallberg, O. Techno-economic evaluation of integrated first- and second-generation ethanol production from grain and straw. Biotechnol. Biofuels 2016, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.; Singh, R.; Arora, R.; Sharma, N.K.; Shukla, M.; Kumar, S. Scope of Algae as Third Generation Biofuels. Front. Bioeng. Biotechnol. 2015, 2, 90. [Google Scholar] [CrossRef]
- Vingering, N.; Oseredczuk, M.; Du Chaffaut, L.; Ireland, J.; Ledoux, M. Fatty acid composition of commercial vegetable oils from the French market analysed using a long highly polar column. OCL-Ol. Corps Gras Lipides 2010, 17, 185–192. [Google Scholar] [CrossRef]
- Serin, H.; Ozcanli, M.; Gokce, M.K.; Tuccar, G. Biodiesel production from tea seed (camellia sinensis) oil and its blends with diesel fuel. Int. J. Green Energy 2013, 10, 370–377. [Google Scholar] [CrossRef]
- Deeba, F.; Patel, A.; Arora, N.; Pruthi, V.; Pruthi, P.A.; Negi, Y.S. Amaranth seeds (Amaranthus palmeri L.) as novel feedstock for biodiesel production by oleaginous yeast. Environ. Sci. Pollut. Res. 2018, 25, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Anwar, F.; Rashid, U.; Ashraf, M.; Nadeem, M. Okra (Hibiscus esculentus) seed oil for biodiesel production. Appl. Energy 2010, 87, 779–785. [Google Scholar] [CrossRef]
- Hellier, P.; Ladommatos, N.; Yusaf, T. The influence of straight vegetable oil fatty acid composition on compression ignition combustion and emissions. Fuel 2015, 143, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Awogbemi, O.; Onuh, E.I.; Inambao, F.L. Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. Int. J. Low-Carbon Technol. 2019, 14, 417–425. [Google Scholar] [CrossRef]
- Verma, R.; Sharma, D.K.; Bisen, P.S. Determination of Free Fatty Acid Composition in Jatropha Crude Oil and Suitability as Biodiesel Feedstock. Curr. Altern. Energy 2019, 3, 59–64. [Google Scholar] [CrossRef]
- Rahangdale, C.P.; Koshta, L.D.; Patle, N.K. Provenance Variation for Oil Content and Fatty Acid Composition in Seed of Pongamia pinnata (L.) Pierre. Int. J. Proj. Manag. 2014, 4, 1–9. [Google Scholar]
- Kulkarni, P.S.; Ramesh, M.R.; Sharanappa, G. Mahua (Madhuca indica) as a Source of Biodiesel in India. Int. J. Sci. Eng. Res. 2013, 4, 2319–2329. [Google Scholar]
- Omohu, J.O. Physicochemical properties and fatty acid composition of castor bean Ricinus communis L. seed oil. Eur. J. Biophys. 2017, 5, 62. [Google Scholar] [CrossRef] [Green Version]
- Sandanasamy, J.D. Fatty acid composition and antibacterial activity of neem (Azadirachta indica) seed oil. Open Conf. Proc. J. 2014, 4, 43–48. [Google Scholar] [CrossRef]
- Al-Rashed, S.A.; Ibrahim, M.M.; Hatata, M.M.A.; El-Gaaly, G.A. Biodiesel production and antioxidant capability from seeds of Salicornia begelovii collected from Al Jubail, Eastern province, Saudi Arabia. Pak. J. Bot. 2016, 48, 2527–2533. [Google Scholar]
- Nayak, S.K.; Mishra, P.C. Application of Nagchampa biodiesel and rice husk gas as fuel. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 2024–2030. [Google Scholar] [CrossRef]
- Mohd-Setapar, H.S.; Nian-Yian, L.; Kamarudin, N.W.W.; Idham, Z.; Norfahana, A.-T. Omega-3 emulsion of Rubber (Hevea brasiliensis) seed oil. Agric. Sci. 2013, 4, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, M. Evaluation of Chemical Compositions of Tobacco (Nicotiana tabacum L) Genotypes Seeds. Annu. Res. Rev. Biol. 2014, 4, 1480–1489. [Google Scholar] [CrossRef]
- Moser, B.R.; Knothe, G.; Cermak, S.C. Biodiesel from meadowfoam (Limnanthes alba L.) seed oil: Oxidative stability and unusual fatty acid composition. Energy Environ. Sci. 2010, 3, 318–327. [Google Scholar] [CrossRef]
- Banani, R.; Youssef, S.; Bezzarga, M.; Abderrabba, M. Waste frying oil with high levels of free fatty acids as one of the prominent sources of biodiesel production. J. Mater. Environ. Sci. 2015, 6, 1178–1185. [Google Scholar]
- Liu, Y.; Liu, H.; Huang, L.; Gui, S.; Zheng, D.; Jia, L.; Fu, Y.; Lu, F. Improvement in thermostability of an alkaline lipase i from: Penicillium cyclopium by directed evolution. RSC Adv. 2017, 7, 38538–38548. [Google Scholar] [CrossRef] [Green Version]
- Toldrá, F.; Rubio, M.A.; Navarro, J.L.; Cabrerizo, L. Quality aspects of pork meat and its nutritional impact. Adv. Exp. Med. Biol. 2004, 542, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Realini, C.E.; Duckett, S.K.; Brito, G.W.; Dalla Rizza, M.; De Mattos, D. Effect of pasture vs. concentrate feeding with or without antioxidants on carcass characteristics, fatty acid composition, and quality of Uruguayan beef. Meat Sci. 2004, 66, 567–577. [Google Scholar] [CrossRef]
- Encinar, J.M.; Sánchez, N.; Martínez, G.; García, L. Study of biodiesel production from animal fats with high free fatty acid content. Bioresour. Technol. 2011, 102, 10907–10914. [Google Scholar] [CrossRef] [PubMed]
- Zduńczyk, Z.; Gruzauskas, R.; Semaskaite, A.; Juskiewicz, J.; Raceviciute-Stupeliene, A.; Wroblewska, M. Fatty acid profile of breast muscle of broiler chickens fed diets with different levels of selenium and vitamin E. Arch. Geflugelkd. 2011, 75, 264–267. [Google Scholar]
- Gandure, J.; Ketlogetswe, C.; Jonas, M. Production, Composition and Fuel Properties of Tallow Biodiesel: A Case of Botswana. Energy Power Eng. 2017, 9, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Cunha, A.; Feddern, V.; De Prá, M.C.; Higarashi, M.M.; de Abreu, P.G.; Coldebella, A. Synthesis and characterization of ethylic biodiesel from animal fat wastes. Fuel 2013, 105, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.-Y.; Alvaro, J.; Hyden, B.; Zienkiewicz, K.; Benning, N.; Zienkiewicz, A.; Bonito, G.; Benning, C. Enhancing oil production and harvest by combining the marine alga Nannochloropsis oceanica and the oleaginous fungus Mortierella elongata. Biotechnol. Biofuels 2018, 11, 174. [Google Scholar] [CrossRef]
- Xue, J.; Niu, Y.-F.; Huang, T.; Yang, W.-D.; Liu, J.-S.; Li, H.-Y. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab. Eng. 2015, 27, 1–9. [Google Scholar] [CrossRef]
- Zulu, N.N.; Popko, J.; Zienkiewicz, K.; Tarazona, P.; Herrfurth, C.; Feussner, I. Heterologous co-expression of a yeast diacylglycerol acyltransferase (ScDGA1) and a plant oleosin (AtOLEO3) as an efficient tool for enhancing triacylglycerol accumulation in the marine diatom Phaeodactylum tricornutum. Biotechnol. Biofuels 2017, 10, 187. [Google Scholar] [CrossRef]
- Shokravi, Z.; Shokravi, H.; Aziz, M.A.; Shokravi, H. The Fourth-Generation Biofuel: A Systematic Review on Nearly Two Decades of Research from 2008 to 2019. In Fossil Free Fuels; CRC Press: Boca Raton, FL, USA, 2019; pp. 213–251. [Google Scholar]
- Basumatary, S. Yellow oleander (Thevetia peruviana) seed oil biodiesel as an alternative and renewable fuel for diesel engines: A review. Int. J. ChemTech Res. 2014, 7, 2823–2840. [Google Scholar]
- Tupa, R.; Silalahi, F.; Simatupang, T.M.; Siallagan, M.P. Biodiesel produced from palm oil in Indonesia: Current status and opportunities. AIMS Energy 2020, 8, 81–101. [Google Scholar] [CrossRef]
- Thushari, I.; Babel, S.; Samart, C. Biodiesel production in an autoclave reactor using waste palm oil and coconut coir husk derived catalyst. Renew. Energy 2019, 134, 125–134. [Google Scholar] [CrossRef]
- Kumar Naik, M.; Charan Meher, L.; Kumar Dalai, A.; Narayan Naik, S. Biodiesel Production Using Karanja (Pongamia pinnata) and Jatropha (Jatropha curcas) Seed Oil. In Handbook of Plant-Based Biofuels; CRC Press: Boca Raton, FL, USA, 2008; pp. 255–266. [Google Scholar]
- Sahu, G.; Das, L.M.; Sharma, B.K.; Naik, S.N. Pilot plant study on biodiesel production from Karanja and Jatropha oils. Asia-Pac. J. Chem. Eng. 2011, 6, 38–43. [Google Scholar] [CrossRef]
- Chhetri, A.; Tango, M.; Budge, S.; Watts, K.; Islam, M. Non-Edible Plant Oils as New Sources for Biodiesel Production. Int. J. Mol. Sci. 2008, 9, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Jena, P.C.; Raheman, H.; Prasanna Kumar, G.V.; Machavaram, R. Biodiesel production from mixture of mahua and simarouba oils with high free fatty acids. Biomass Bioenergy 2010, 34, 1108–1116. [Google Scholar] [CrossRef]
- Alamu, O.J.; Dehinbo, O.; Sulaiman, A.M. Production and testing of coconut oil biodiesel fuel and its blend. Leonardo J. Sci. 2010, 16, 95–104. [Google Scholar]
- Mekhilef, S.; Siga, S.; Saidur, R. A review on palm oil biodiesel as a source of renewable fuel. Renew. Sustain. Energy Rev. 2011, 15, 1937–1949. [Google Scholar] [CrossRef]
- Mariano, G.C.; Lopes, T.J.; Dias, R.; Bastos Quadri, M.; Bolzan, A. Production of Biodiesel with Seed Soybean and Supercritical Ethanol. J. Sustain. Bioenergy Syst. 2014, 4, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Mansourpoor, M. Optimization of biodiesel production from Sunflower Oil Using Response Surface Methodology. J. Chem. Eng. Process Technol. 2012, 03, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Ruan, R.; Zhang, Y.; Chen, P.; Liu, S.; Fan, L.; Zhou, N.; Ding, K.; Peng, P.; Addy, M.; Cheng, Y.; et al. Biofuels: Introduction. In Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–43. [Google Scholar]
- Groves, C.; Shankar, M.; Thomas, P.J. Second-generation biofuels: Exploring imaginaries via deliberative workshops with farmers. J. Responsible Innovat. 2018, 5, 149–169. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, D.; Soni, S.L.; Inda, C.S.; Sharma, S.; Sharma, P.K.; Jhalani, A. A Comprehensive Review on 1st-Generation Biodiesel Feedstock Palm Oil: Production, Engine Performance, and Exhaust Emissions. Bioenergy Res. 2020, 14, 1–22. [Google Scholar] [CrossRef]
- Foidl, N.; Foidl, G.; Sanchez, M.; Mittelbach, M.; Hackel, S. Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresour. Technol. 1996, 58, 77–82. [Google Scholar] [CrossRef]
- Siler-Marinkovic, S.; Tomasevic, A. Transesterification of sunflower oil in situ. Fuel 1998, 77, 1389–1391. [Google Scholar] [CrossRef]
- Ghadge, S.V.; Raheman, H. Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology. Bioresour. Technol. 2006, 97, 379–384. [Google Scholar] [CrossRef]
- Rodŕguez, R.P.; Pérez, L.G.; Alfonso, M.; Duarte, M.; Caro, R.; Galle, J.; Sierens, R.; Verhelst, S. Thermal behavior of Jatropha curcas oils and their derived fatty acid ethyl esters as potential feedstocks for energy production in Cuba. J. Therm. Anal. Calorim. 2012, 109, 1005–1012. [Google Scholar] [CrossRef]
- Canoira, L.; Alcántara, R.; Jesús García-Martínez, M.; Carrasco, J. Biodiesel from Jojoba oil-wax: Transesterification with methanol and properties as a fuel. Biomass Bioenergy 2006, 30, 76–81. [Google Scholar] [CrossRef]
- Usta, N. Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine. Biomass Bioenergy 2005, 28, 77–86. [Google Scholar] [CrossRef]
- Reyes, J.F.; Sepúlveda, M.A. PM-10 emissions and power of a Diesel engine fueled with crude and refined Biodiesel from salmon oil. Fuel 2006, 85, 1714–1719. [Google Scholar] [CrossRef]
- Kansedo, J.; Lee, K.T.; Bhatia, S. Cerbera odollam (sea mango) oil as a promising non-edible feedstock for biodiesel production. Fuel 2009, 88, 1148–1150. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H. Progress in biodiesel processing. Appl. Energy 2010, 87, 1815–1835. [Google Scholar] [CrossRef]
- Canakci, M. The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour. Technol. 2007, 98, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Hanna, M.A. Biodiesel production: A review. Bioresour. Technol. 1999, 70, 1–15. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renew. Sustain. Energy Rev. 2010, 14, 200–216. [Google Scholar] [CrossRef]
- Hazrat, M.A.; Rasul, M.G.; Mofijur, M.; Khan, M.M.K.; Djavanroodi, F.; Azad, A.K.; Bhuiya, M.M.K.; Silitonga, A.S. A Mini Review on the Cold Flow Properties of Biodiesel and its Blends. Front. Energy Res. 2020, 8, 598651. [Google Scholar] [CrossRef]
- Lang, X.; Dalai, A.K.; Bakhshi, N.N.; Reaney, M.J.; Hertz, P.B. Preparation and characterization of bio-diesels from various bio-oils. Bioresour. Technol. 2001, 80, 53–62. [Google Scholar] [CrossRef]
- Patil, V.; Tran, K.Q.; Giselrød, H.R. Towards sustainable production of biofuels from microalgae. Int. J. Mol. Sci. 2008, 9, 1188–1195. [Google Scholar] [CrossRef]
- Abomohra, A.E.-F.; Elsayed, M.; Esakkimuthu, S.; El-Sheekh, M.; Hanelt, D. Potential of fat, oil and grease (FOG) for biodiesel production: A critical review on the recent progress and future perspectives. Prog. Energy Combust. Sci. 2020, 81, 100868. [Google Scholar] [CrossRef]
- Levine, B. New feedstock options and trends boost biodiesel production. Digest 2020, 5, 5–7. [Google Scholar]
- Leong, W.-H.; Lim, J.-W.; Lam, M.-K.; Uemura, Y.; Ho, Y.-C. Third generation biofuels: A nutritional perspective in enhancing microbial lipid production. Renew. Sustain. Energy Rev. 2018, 91, 950–961. [Google Scholar] [CrossRef]
- Deshmukh, S.; Kumar, R.; Bala, K. Microalgae biodiesel: A review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions. Fuel Process. Technol. 2019, 191, 232–247. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ramesh, K.; Purnachandran, R.; Mohamed Shameer, P. A review on the properties, performance and emission aspects of the third generation biodiesels. Renew. Sustain. Energy Rev. 2018, 82, 2970–2992. [Google Scholar] [CrossRef]
- Hemaiswarya, S.; Raja, R.; Carvalho, I.S.; Ravikumar, R.; Zambare, V.; Barh, D. An Indian scenario on renewable and sustainable energy sources with emphasis on algae. Appl. Microbiol. Biotechnol. 2012, 96, 1125–1135. [Google Scholar] [CrossRef]
- Santana, A.; Jesus, S.; Larrayoz, M.A.; Filho, R.M. Supercritical carbon dioxide extraction of algal lipids for the biodiesel production. Procedia Eng. 2012, 42, 1755–1761. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.L.; Yasin, N.H.M.; Derek, C.J.C.; Lim, J.K. Microalgae as a sustainable energy source for biodiesel production: A review. Renew. Sustain. Energy Rev. 2011, 15, 584–593. [Google Scholar] [CrossRef]
- Shah, S.H.; Raja, I.A.; Rizwan, M.; Rashid, N.; Mahmood, Q.; Shah, F.A.; Pervez, A. Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan. Renew. Sustain. Energy Rev. 2018, 81, 76–92. [Google Scholar] [CrossRef]
- Inganäs, O.; Sundström, V. Solar energy for electricity and fuels. Ambio 2016, 45, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Rabaey, K.; Rozendal, R.A. Microbial electrosynthesis—Revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 2010, 8, 706–716. [Google Scholar] [CrossRef]
- Gojun, M.; Pustahija, L.; Tušek, A.J.; Šalić, A.; Valinger, D.; Zelić, B. Kinetic parameter estimation and mathematical modelling of lipase catalysed biodiesel synthesis in a microreactor. Micromachines 2019, 10, 759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ado, M.A.; Abas, F.; Mohammed, A.S.; Ghazali, H.M. Anti- and pro-lipase activity of selected medicinal, herbal and aquatic plants, and structure elucidation of an anti-lipase compound. Molecules 2013, 18, 14651–14669. [Google Scholar] [CrossRef] [PubMed]
- Pallerla, O.; Vanitha, S. Isolation and Determination of Lipase activity in germinating Arachis hypogaea by Entrapment method Isolation and Determination of Lipase activity in germinating Arachis hypogaea by Entrapment method. Int. J. Sci. Res. Biol. Sci. 2019, 6, 142–147. [Google Scholar] [CrossRef]
- Mittelbach, M. Lipase catalyzed alcoholysis of sunflower oil. J. Am. Oil Chem. Soc. 1990, 67, 168–170. [Google Scholar] [CrossRef]
- Thakur, S. Lipases, Its sources, Properties and Applications: A Review. Int. J. Sci. Eng. Res. 2012, 3, 1–29. [Google Scholar]
- Barros, M.; Fleuri, L.F.; MacEdo, G.A. Seed lipases: Sources, applications and properties—A review. Braz. J. Chem. Eng. 2010, 27, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Polizelli, P.P.; Facchini, F.D.A.; Bonilla-Rodriguez, G.O. Stability of a lipase extracted from seeds of pachira aquatica in commercial detergents and application tests in poultry wastewater pretreatment and fat particle hydrolysis. Enzym. Res. 2013, 2013, 324061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ejedegba, B.O.; Onyeneke, E.C.; Oviasogie, P.O. Characteristics of lipase isolated from coconut (Cocos nucifera linn) seed under different nutrient treatments. Afr. J. Biotechnol. 2007, 6, 723–727. [Google Scholar]
- Eastmond, P.J. Cloning and characterization of the acid lipase from Castor beans. J. Biol. Chem. 2004, 279, 45540–45545. [Google Scholar] [CrossRef] [Green Version]
- Isbilir, S.S.; Ozcan, H.M.; Yagar, H. Some biochemical properties of lipase from bay laurel (Laurus nobilis L.) seeds. JAOCS J. Am. Oil Chem. Soc. 2008, 85, 227–233. [Google Scholar] [CrossRef]
- Kanwar, R.; Mehta, D.K. Survey, collection and seed morphometric characterization of French bean (Phaseolus vulgaris L.) landraces of Himachal Pradesh. Legum. Res. 2018, 41, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Tuter, M.; Secundo, F.; Riva, S.; Ayşe Aksoy, H.; Ustun, G. Partial purification of Nigella sativa L. seed lipase and its application in transesterification reactions. J. Am. Oil Chem. Soc. 2003, 80, 43–48. [Google Scholar] [CrossRef]
- Sana, N.K.; Hossin, I.; Haque, E.M.; Shaha, R.K. Identification, Purification and Characterization of Lipase from Germinating Oil Seeds (Brassica napus L.). Pak. J. Biol. Sci. 2004, 7, 246–252. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Raju, A.; Rajasekharan, R. Identification, purification, and characterization of a thermally stable lipase from rice bran. A new member of the (phospho) lipase family. Plant Physiol. 2001, 127, 1728–1738. [Google Scholar] [CrossRef] [PubMed]
- Abigor, R.D.; Uadia, P.O.; Foglia, T.A.; Haas, M.J.; Scott, K.; Savary, B.J. Partial purification and properties of lipase from germinating seeds of Jatropha curcas L. J. Am. Oil Chem. Soc. 2002, 79, 1123–1126. [Google Scholar] [CrossRef]
- Borek, S.; Ratajczak, W.; Ratajczak, L. Ultrastructural and enzymatic research on the role of sucrose in mobilization of storage lipids in germinating yellow lupine seeds. Plant Sci. 2006, 170, 441–452. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Esmail, G.A.; Ghilan, A.K.M.; Arasu, M.V. Isolation and screening of Streptomyces sp. Al-Dhabi-49 from the environment of Saudi Arabia with concomitant production of lipase and protease in submerged fermentation. Saudi J. Biol. Sci. 2020, 27, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, D.; Swarnkar, M.K.; Singh, A.K.; Kumar, S. Genome assembly of Chryseobacterium polytrichastri ERMR1:04, a psychrotolerant bacterium with cold active proteases, isolated from east rathong glacier in India. Genome Announc. 2015, 3, 2014–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Mukhia, S.; Kumar, N.; Acharya, V.; Kumar, S.; Kumar, R. A Broad Temperature Active Lipase Purified from a Psychrotrophic Bacterium of Sikkim Himalaya with Potential Application in Detergent Formulation. Front. Bioeng. Biotechnol. 2020, 8, 642. [Google Scholar] [CrossRef]
- Enujiugha, V.N.; Thani, F.A.; Sanni, T.M.; Abigor, R.D. Lipase activity in dormant seeds of the African oil bean (Pentaclethra macrophylla Benth). Food Chem. 2004, 88, 405–410. [Google Scholar] [CrossRef]
- Pal, M.; Swarnkar, M.K.; Dhar, H.; Chhibber, S.; Gulati, A. Genome assembly of Chryseobacterium sp. strain IHBB 10212 from glacier top-surface soil in the Indian trans-Himalayas with potential for hydrolytic enzymes. Genom. Data 2017, 13, 46–49. [Google Scholar] [CrossRef]
- Hassan, S.W.M.; El Latif, H.H.A.; Ali, S.M. Production of cold-active lipase by free and immobilized marine Bacillus cereus HSS: Application in wastewater treatment. Front. Microbiol. 2018, 9, 2377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kai, W.; Peisheng, Y. Optimization of Lipase production from a novel strain Thalassospira permensis M35-15 using Response Surface Methodology. Bioengineered 2016, 7, 298–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saraswat, R.; Bhushan, I.; Gupta, P.; Kumar, V.; Verma, V. Production and purification of an alkaline lipase from Bacillus sp. for enantioselective resolution of (±)-Ketoprofen butyl ester. 3 Biotech 2018, 8, 491. [Google Scholar] [CrossRef] [PubMed]
- Abol Fotouh, D.M.; Bayoumi, R.A.; Hassan, M.A. Production of Thermoalkaliphilic Lipase from Geobacillus thermoleovorans DA2 and Application in Leather Industry. Enzym. Res. 2016, 2016, 9034364. [Google Scholar] [CrossRef] [Green Version]
- Biundo, A.; Hromic, A.; Pavkov-Keller, T.; Gruber, K.; Quartinello, F.; Haernvall, K.; Perz, V.; Arrell, M.S.; Zinn, M.; Ribitsch, D.; et al. Characterization of a poly(butylene adipate-co-terephthalate)-hydrolyzing lipase from Pelosinus fermentans. Appl. Microbiol. Biotechnol. 2016, 100, 1753–1764. [Google Scholar] [CrossRef]
- Akbar, A.; Sitara, U.; Ali, I.; Muhammad, N.; Khan, S.A. Isolation and characterization of biotechnologically potent micrococcus luteus strain from environment. Pak. J. Zool. 2014, 46, 967–973. [Google Scholar]
- Saun, N.K.; Narwal, S.K.; Dogra, P.; Chauhan, G.S.; Gupta, R. Comparative study of free and immobilized lipase from Bacillus aerius and its application in synthesis of ethyl ferulate. J. Oleo Sci. 2014, 63, 911–919. [Google Scholar] [CrossRef] [Green Version]
- Yoo, H.Y.; Simkhada, J.R.; Cho, S.S.; Park, D.H.; Kim, S.W.; Seong, C.N.; Yoo, J.C. A novel alkaline lipase from Ralstonia with potential application in biodiesel production. Bioresour. Technol. 2011, 102, 6104–6111. [Google Scholar] [CrossRef] [PubMed]
- Ülker, S.; Özel, A.; Çolak, A.; Alpay Karaoǧlu, Ş. Isolation, production, and characterization of an extracellular lipase from Trichoderma harzianum isolated from soil. Turk. J. Biol. 2011, 35, 543–550. [Google Scholar] [CrossRef]
- Uttatree, S.; Winayanuwattikun, P.; Charoenpanich, J. Isolation and characterization of a novel thermophilic-organic solvent stable lipase from Acinetobacter baylyi. Appl. Biochem. Biotechnol. 2010, 162, 1362–1376. [Google Scholar] [CrossRef]
- Abdou, A.M. Purification and partial characterization of psychrotrophic Serratia marcescens lipase. J. Dairy Sci. 2003, 86, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Mehta, A.; Grover, C.; Bhardwaj, K.K.; Gupta, R. Application of lipase purified from aspergillus fumigatus in the syntheses of ethyl acetate and ethyl lactate. J. Oleo Sci. 2020, 69, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Silano, V.; Barat Baviera, J.M.; Bolognesi, C.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Lampi, E.; Mortensen, A.; Rivière, G.; et al. Safety evaluation of the food enzyme triacylglycerol lipase from Trichoderma reesei (strain RF10625). EFSA J. 2019, 17, e05837. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, R.R.; Lopes, D.B.; Aguiar-Oliveira, E.; Kamimura, E.S.; Macedo, G.A. A review on Geotrichum lipases: Production, purification, immobilization and applications. Chem. Biochem. Eng. Q. 2016, 30, 439–454. [Google Scholar] [CrossRef]
- Gopinath, S.C.B.; Hilda, A.; Priya, T.L.; Annadurai, G. Purification of lipase from Cunninghamella verticillata and optimization of enzyme activity using response surface methodology. World J. Microbiol. Biotechnol. 2002, 18, 449–458. [Google Scholar] [CrossRef]
- Toscano, L.; Gochev, V.; Montero, G.; Stoytcheva, M. Enhanced production of extracellular lipase by novel mutant strain of aspergillus niger. Biotechnol. Biotechnol. Equip. 2011, 25, 2243–2247. [Google Scholar] [CrossRef] [Green Version]
- Teng, Y.; Xu, Y. Culture condition improvement for whole-cell lipase production in submerged fermentation by Rhizopus chinensis using statistical method. Bioresour. Technol. 2008, 99, 3900–3907. [Google Scholar] [CrossRef] [PubMed]
- Ahammad, S.Z.; Gomes, J.; Sreekrishnan, T.R. Wastewater treatment forproductionofH2S-free biogas. J. Chem. Technol. Biotechnol. 2008, 83, 1163–1169. [Google Scholar] [CrossRef]
- Sakpuntoon, V.; Angchuan, J.; Boontham, W.; Khunnamwong, P.; Boonmak, C.; Srisuk, N. Grease waste as a reservoir of lipase-producing yeast and description of Limtongella siamensis gen. Nov., sp. nov. Microorganisms 2020, 8, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Han, B.; Gui, X.; Wang, G.; Xu, L.; Yan, Y.; Madzak, C.; Pan, D.; Wang, Y.; Zha, G.; et al. Engineering Yarrowia lipolytica to Simultaneously Produce Lipase and Single Cell Protein from Agro-industrial Wastes for Feed. Sci. Rep. 2018, 8, 758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çakmak, R.; Topal, G.; Çınar, E. Covalent Immobilization of Candida rugosa Lipase on Epichlorohydrin-Coated Magnetite Nanoparticles: Enantioselective Hydrolysis Studies of Some Racemic Esters and HPLC Analysis. Appl. Biochem. Biotechnol. 2020, 191, 1411–1431. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, M.; Majumder, A.B.; Gupta, M.N. Promiscuous Lipase-Catalyzed C-C Bond Formation Reactions between 4 Nitrobenzaldehyde and 2-Cyclohexen-1-one in Biphasic Medium: Aldol and Morita-Baylis-Hillman Adduct Formations. Catal. Lett. 2015, 145, 527–532. [Google Scholar] [CrossRef]
- Del Pilar Rodriguez, M.; Brzezinski, R.; Faucheux, N.; Heitz, M. Enzymatic transesterification of lipids from microalgae into biodiesel: A review. AIMS Energy 2016, 4, 817–855. [Google Scholar] [CrossRef]
- Šinkuniene, D.; Adlercreutz, P. Effects of regioselectivity and lipid class specificity of lipases on transesterification, exemplified by biodiesel production. J. Am. Oil Chem. Soc. 2014, 91, 1283–1290. [Google Scholar] [CrossRef] [Green Version]
- João, J.H.; Tres, M.V.; Jahn, S.L.; de Oliveira, J.V. Lipases in liquid formulation for biodiesel production: Current status and challenges. Biotechnol. Appl. Biochem. 2020, 67, 648–667. [Google Scholar] [CrossRef]
- Salwoom, L.; Rahman, R.N.Z.R.A.; Salleh, A.B.; Shariff, F.M.; Convey, P.; Ali, M.S.M. New recombinant cold-adapted and organic solvent tolerant lipase from psychrophilic Pseudomonas sp. Lsk25, isolated from signy island antarctica. Int. J. Mol. Sci. 2019, 20, 1264. [Google Scholar] [CrossRef] [Green Version]
- Latip, W.; Raja Abd Rahman, R.N.Z.; Leow, A.T.C.; Mohd Shariff, F.; Kamarudin, N.H.A.; Mohamad Ali, M.S. The effect of N-terminal domain removal towards the biochemical and structural features of a thermotolerant lipase from an antarctic Pseudomonas sp. Strain AMS3. Int. J. Mol. Sci. 2018, 19, 560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Almeida, A.F.; Tauk-Tornisielo, S.M.; Carmona, E.C. Acid lipase from Candida viswanathii: Production, biochemical properties, and potential application. BioMed Res. Int. 2013, 2013, 435818. [Google Scholar] [CrossRef] [Green Version]
- Sethi, B.K.; Nanda, P.K.; Sahoo, S. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10. Braz. J. Microbiol. 2016, 47, 143–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanmani, P.; Kumaresan, K.; Aravind, J. Gene cloning, expression, and characterization of the bacillus amyloliquefaciens PS35 lipase. Braz. J. Microbiol. 2015, 46, 1235–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, N.S.M.; Salleh, A.B.; Rahman, R.N.Z.R.A.; Leow, T.C.; Ali, M.S.M. Calcium-induced activity and folding of a repeat in toxin lipase from antarctic pseudomonas fluorescens strain AMS8. Toxins 2020, 12, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilesanmi, O.I.; Adekunle, A.E.; Omolaiye, J.A.; Olorode, E.M.; Ogunkanmi, A.L. Isolation, optimization and molecular characterization of lipase producing bacteria from contaminated soil. Sci. Afr. 2020, 8, e00279. [Google Scholar] [CrossRef]
- Tan, T.; Zhang, M.; Xu, J.; Zhang, J. Optimization of culture conditions and properties of lipase from Penicillium camembertii Thom PG-3. Process Biochem. 2004, 39, 1495–1502. [Google Scholar] [CrossRef]
- Colen, G.; Junqueira, R.G.; Moraes-Santos, T. Isolation and screening of alkaline lipase-producing fungi from Brazilian savanna soil. World J. Microbiol. Biotechnol. 2006, 22, 881–885. [Google Scholar] [CrossRef]
- Wu, J.P.; Li, M.; Zhou, Y.; Yang, L.R.; Xu, G. Introducing a salt bridge into the lipase of Stenotrophomonas maltophilia results in a very large increase in thermal stability. Biotechnol. Lett. 2015, 37, 403–407. [Google Scholar] [CrossRef]
- Febriani; Aura, N.; Kemala, P.; Saidi, N.; Iqbalsyah, T.M. Novel thermostable lipase produced by a thermo-halophilic bacterium that catalyses hydrolytic and transesterification reactions. Heliyon 2020, 6, e04520. [Google Scholar] [CrossRef]
- Arangio, A.M.; Slade, J.H.; Berkemeier, T.; Pöschl, U.; Knopf, D.A.; Shiraiwa, M. Multiphase chemical kinetics of oh radical uptake by molecular organic markers of biomass burning aerosols: Humidity and temperature dependence, surface reaction, and bulk diffusion. J. Phys. Chem. A 2015, 119, 4533–4544. [Google Scholar] [CrossRef] [Green Version]
- Hasmah Ishak, S.N.; Ahmad Kamarudin, N.H.; Mohamad Ali, M.S.; Chor Leow, A.T.; Raja Noor Zaliha, R.N.Z.R. Ion-pair interaction and hydrogen bonds as main features of protein thermostability in mutated T1 recombinant lipase originating from Geobacillus zalihae. Molecules 2020, 25, 3430. [Google Scholar] [CrossRef]
- Akoh, C.C.; Chang, S.W.; Lee, G.C.; Shaw, J.F. Enzymatic approach to biodiesel production. J. Agric. Food Chem. 2007, 55, 8995–9005. [Google Scholar] [CrossRef]
- Wang, R.; Wang, S.; Xu, Y.; Yu, X. Enhancing the thermostability of Rhizopus chinensis lipase by rational design and MD simulations. Int. J. Biol. Macromol. 2020, 160, 1189–1200. [Google Scholar] [CrossRef]
- Li, G.; Fang, X.; Su, F.; Chen, Y.; Xu, L.; Yan, Y. Enhancing the thermostability of Rhizomucor miehei lipase with a limited screening library by rational-design point mutations and disulfide bonds. Appl. Environ. Microbiol. 2018, 84, e02129-17. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Wang, Z.; Gao, F.; Lin, J.; Yang, L.; Wu, M. Enhancing the thermostability of Rhizopus oryzae lipase by combined mutation of hot-spots and engineering a disulfide bond. RSC Adv. 2018, 8, 41247–41254. [Google Scholar] [CrossRef] [Green Version]
- Christopher, L.P.; Zambare, V.P.; Zambare, A.; Kumar, H.; Malek, L. A thermo-alkaline lipase from a new thermophile Geobacillus thermodenitrificans AV-5 with potential application in biodiesel production. J. Chem. Technol. Biotechnol. 2015, 90, 2007–2016. [Google Scholar] [CrossRef]
- Bhosale, H.; Shaheen, U.; Kadam, T. Characterization of a Hyperthermostable Alkaline Lipase from Bacillus sonorensis 4R. Enzym. Res. 2016, 2016, 4170684. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Soni, S.K.; Vohra, R.M.; Gupta, L.K.; Gupta, J.K. Purification and characterisation of a thermostable alkaline lipase from a new thermophilic Bacillus sp. RSJ-1. Process Biochem. 2002, 37, 1075–1084. [Google Scholar] [CrossRef]
- Monteiro, R.R.C.; Lima, P.J.M.; Pinheiro, B.B.; Freire, T.M.; Dutra, L.M.U.; Fechine, P.B.A.; Gonçalves, L.R.B.; de Souza, M.C.M.; Dos Santos, J.C.S.; Fernandez-Lafuente, R. Immobilization of lipase a from Candida antarctica onto Chitosan-coated magnetic nanoparticles. Int. J. Mol. Sci. 2019, 20, 4018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalal, S.; Singh, P.K.; Raghava, S.; Rawat, S.; Gupta, M.N. Purification and properties of the alkaline lipase from Burkholderia cepacia A.T.C.C. 25609. Biotechnol. Appl. Biochem. 2008, 51, 23. [Google Scholar] [CrossRef]
- Leow, T.C.; Rahman, R.N.Z.R.A.; Basri, M.; Salleh, A.B. A thermoalkaliphilic lipase of Geobacillus sp. T1. Extremophiles 2007, 11, 527–535. [Google Scholar] [CrossRef] [PubMed]
- De Souza, W.; Reis, M.; Deda, R.; Ferreira, M.; Benedito, E. Immobilization of commercial lipase onto different supports: Characterization and application in esterification reaction. Int. J. Eng. Res. Sci. 2020, 6, 15–24. [Google Scholar]
- Cardoso, C.L.; De Moraes, M.C.; Cass, Q.B. Imobilização de enzimas em suportes cromatográficos: Uma ferramenta na busca por substâncias bioativas. Quim. Nova 2009, 32, 175–187. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Y.; Sheng, J.; Sun, M. Immobilization of Yarrowia lipolytica Lipase on Macroporous Resin Using Different Methods: Characterization of the Biocatalysts in Hydrolysis Reaction. BioMed Res. Int. 2015, 2015, 139179. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.K.; Mubarak, N.M.; Abdullah, E.C.; Khalid, M.; Nizamuddin, S.; Baloch, H.A.; Siddiqui, M.T.H. Immobilization of Lipase Enzyme Carbon Nanotubes via Adsorption. IOP Conf. Ser. Mater. Sci. Eng. 2019, 495, 012055. [Google Scholar] [CrossRef]
- Bajaj, A.; Lohan, P.; Jha, P.N.; Mehrotra, R. Biodiesel production through lipase catalyzed transesterification: An overview. J. Mol. Catal. B Enzym. 2010, 62, 9–14. [Google Scholar] [CrossRef]
- He, Y.; Wang, X.; Wei, H.; Zhang, J.; Chen, B.; Chen, F. Direct enzymatic ethanolysis of potential Nannochloropsis biomass for co-production of sustainable biodiesel and nutraceutical eicosapentaenoic acid. Biotechnol. Biofuels 2019, 12, 78. [Google Scholar] [CrossRef] [Green Version]
- Alavijeh, R.S.; Tabandeh, F.; Tavakoli, O.; Karkhane, A.; Shariati, P. Enzymatic production of biodiesel from microalgal oil using ethyl acetate as an acyl acceptor. J. Oleo Sci. 2015, 64, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Arumugam, A.; Ponnusami, V. Production of biodiesel by enzymatic transesterification of waste sardine oil and evaluation of its engine performance. Heliyon 2017, 3, e00486. [Google Scholar] [CrossRef] [Green Version]
- Suhendra, D.; Gunawan, E.R.; Nurita, A.D.; Komalasari, D.; Ardianto, T. Optimization of the enzymatic synthesis of biodiesel from Terminalia cattapa L. Kernel oil using response surface methodology. J. Oleo Sci. 2017, 66, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Murillo, G.; He, Y.; Yan, Y.; Sun, J.; Bartocci, P.; Ali, S.S.; Fantozzi, F. Scaled-up biodiesel synthesis from Chinese Tallow Kernel oil catalyzed by Burkholderia cepacia lipase through ultrasonic assisted technology: A non-edible and alternative source of bio energy. Ultrason. Sonochem. 2019, 58, 104658. [Google Scholar] [CrossRef] [PubMed]
- Choi, N.; Lee, J.S.; Kwak, J.; Lee, J.; Kim, I.H. Production of biodiesel from acid oil via a two-step enzymatic transesterification. J. Oleo Sci. 2016, 65, 913–921. [Google Scholar] [CrossRef] [Green Version]
- Corrêa, I.N.D.S.; Lorena De Souza, S.; Catran, M.; Bernardes, O.L.; Portilho, M.F.; Langone, M.A.P. Enzymatic biodiesel synthesis using a byproduct obtained from palm oil refining. Enzym. Res. 2011, 2011, 814507. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.W.; Sha, C.; Guo, Y.L.; Xiao, R.; Xu, Y. High-level expression and characterization of a chimeric lipase from Rhizopus oryzae for biodiesel production. Biotechnol. Biofuels 2013, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Kumari, A.; Mahapatra, P.; Garlapati, V.K.; Banerjee, R. Enzymatic transesterification of Jatropha oil. Biotechnol. Biofuels 2009, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, H.N.; Hanif, M.A.; Qasim, M. Ata-ur-Rehman Biodiesel production from waste tallow. Fuel 2008, 87, 2961–2966. [Google Scholar] [CrossRef]
- Surendhiran, D.; Sirajunnisa, A.R.; Vijay, M. An alternative method for production of microalgal biodiesel using novel Bacillus lipase. 3 Biotech 2015, 5, 715–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Rós, P.C.M.; De Castro, H.F.; Carvalho, A.K.F.; Soares, C.M.F.; De Moraes, F.F.; Zanin, G.M. Microwave-assisted enzymatic synthesis of beef tallow biodiesel. J. Ind. Microbiol. Biotechnol. 2012, 39, 529–536. [Google Scholar] [CrossRef]
- Pollardo, A.A.; Lee, H.S.; Lee, D.; Kim, S.; Kim, J. Solvent effect on the enzymatic production of biodiesel from waste animal fat. J. Clean. Prod. 2018, 185, 382–388. [Google Scholar] [CrossRef]
- Lu, J.; Nie, K.; Xie, F.; Wang, F.; Tan, T. Enzymatic synthesis of fatty acid methyl esters from lard with immobilized Candida sp. 99-125. Process Biochem. 2007, 42, 1367–1370. [Google Scholar] [CrossRef]
- Lee, K.T.; Foglia, T.A.; Chang, K.S. Production of alkyl ester as biodiesel from fractionated lard and restaurant grease. J. Am. Oil Chem. Soc. 2002, 79, 191–195. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, H.; Yan, Y. Optimization of lipase-catalyzed transesterification of lard for biodiesel production using response surface methodology. Appl. Biochem. Biotechnol. 2010, 160, 504–515. [Google Scholar] [CrossRef]
- Ali, A.; Kaur, M.; Mehra, U. Use of immobilized Pseudomonas sp. as whole cell catalyst for the transesterification of used cotton seed oil. J. Oleo Sci. 2011, 60, 7–10. [Google Scholar] [CrossRef] [Green Version]
- Srimhan, P.; Kongnum, K.; Taweerodjanakarn, S.; Hongpattarakere, T. Selection of lipase producing yeasts for methanol-tolerant biocatalyst as whole cell application for palm-oil transesterification. Enzym. Microb. Technol. 2011, 48, 293–298. [Google Scholar] [CrossRef]
- Xiao, M.; Qi, C.; Obbard, J.P. Biodiesel production using Aspergillus niger as a whole-cell biocatalyst in a packed-bed reactor. GCB Bioenergy 2011, 3, 293–298. [Google Scholar] [CrossRef]
- Pazouki, M.; Zamani, F.; Zamzamian, S.A.H.; Najafpour, G. Study on Reaction Conditions in Whole Cell Biocatalyst Methanolysis of Pretreated Used Cooking Oil. In Proceedings of the World Renewable Energy Congress-Sweden, Linköping, Sweden, 8–13 May 2011; Volume 57, pp. 93–100. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Qin, X.; Wang, J.; Yang, B.; Wang, W.; Huang, W.; Wang, Y. Hydrolysis of soybean oil to produce diacylglycerol by a lipase from Rhizopus oryzae. J. Mol. Catal. B Enzym. 2015, 115, 43–50. [Google Scholar] [CrossRef]
- Fior Markets. Global Lipase Market Is Expected to Reach USD 961.85 Million by 2028; Fior Market Research LLP: Pune, India, 2021. [Google Scholar]
- Houde, A.; Kademi, A.; Leblanc, D. Lipases and Their Industrial Applications: An Overview. Appl. Biochem. Biotechnol. 2004, 118, 155–170. [Google Scholar] [CrossRef]
- Fiormarkets Report. Lipase Market by Source (Animal Lipases, Microbial Lipases), Application (Animal Feed, Bakery, Dairy, Confectionery, Others), Region, Global Industry Analysis, Market Size, Share, Growth, Trends, and Forecast. 2021 to 2028; Fior Market Research LLP: Pune, India, 2021. [Google Scholar]
- Rouhany, M.; Montgomery, H. Global Biodiesel Production: The State of the Art and Impact on Climate Change. In Biodiesel. Biofuel and Biorefinery Technologies; Tabatabaei, M., Aghbashlo, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–14. ISBN 9783030009854. [Google Scholar]
- Imark Report. Biodiesel Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2021–2026; Imark Group: Noida, India, 2021. [Google Scholar]
- Hobden, R. Commercializing enzymatic biodiesel production. Biodiesel Magazine, 3 January 2014. [Google Scholar]
- Kotrba, R. SRS Int’l, biodiesel experts partner to offer enzymatic process. Biodiesel Magazine, 4 February 2015. [Google Scholar]
- Kotrba, R. Buster biofuels to employ viesel fuel enzymatic biodiesel process. Biodiesel Magazine, 11 November 2014. [Google Scholar]
- Kotrba, R. Blue Sun launches commercial-scale enzymatic biodiesel process. Biodiesel Magazine, 16 January 2014. [Google Scholar]
- Tafes, A. Immobilized enzyme technology enters commercial stage. Biodiesel Magazine, 30 December 2014. [Google Scholar]
- EnzymoCore’s New Plant in Israel. Available online: https://enzymocore.com/news/transbiodiesels-new-plant-in-israel/ (accessed on 20 August 2021).
- Tafesh, A. Biofuel International; Woodcote Media Ltd.: Morden, UK, 2015; pp. 44–45. [Google Scholar]
- Aemetis-Inc. Aemetis completes enzymatic biodiesel production unit in India. Biodiesel Magazine, 28 August 2017. [Google Scholar]
- Toldrá-Reig, F.; Mora, L.; Toldrá, F. Developments in the Use of Lipase Transesterification for Biodiesel Production from Animal Fat Waste. Appl. Sci. 2020, 10, 5085. [Google Scholar] [CrossRef]
- Andreaus, J.; Camassola, M.; de Oliveira Faber, M.; Santana Ferreira-Leitão, V. ENZITEC special edition 2016 industrial applications of enzymes in Brazil. Biocatal. Biotransform. 2019, 37, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E.; Fattah, I.M.R.; Mobarak, H.M. Comparative evaluation of performance and emission characteristics of Moringa oleifera and Palm oil based biodiesel in a diesel engine. Ind. Crop. Prod. 2014, 53, 78–84. [Google Scholar] [CrossRef]
- Palash, S.M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E.; Rizwanul Fattah, I.M.; Sanjid, A. Biodiesel production, characterization, diesel engine performance, and emission characteristics of methyl esters from Aphanamixis polystachya oil of Bangladesh. Energy Convers. Manag. 2015, 91, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Yadav, K.; Dwivedi, G. Impact analysis of oxidation stability for biodiesel & its blends. Mater. Today Proc. 2018, 5, 19255–19261. [Google Scholar] [CrossRef]
- Samuel, O.D.; Oreko, B.U.; Oyejide, J.O.; Idi, S.; Fayomi, O.S.I. Experimental and empirical study of diesel and biodiesel produced from blend of fresh vegetable and waste vegetable oil on density, viscosity, sulphur content and acid value. J. Phys. Conf. Ser. 2019, 1378, 042024. [Google Scholar] [CrossRef]
- Botella, L.; Bimbela, F.; MartÃn, L.; Arauzo, J.; Sánchez, J.L. Oxidation stability of biodiesel fuels and blends using the Rancimat and PetroOXY methods. Effect of 4-allyl-2,6-dimethoxyphenol and catechol as biodiesel additives on oxidation stability. Front. Chem. 2014, 2, 43. [Google Scholar] [CrossRef] [Green Version]
- Razzaq, L.; Farooq, M.; Mujtaba, M.A.; Sher, F.; Farhan, M.; Hassan, M.T.; Soudagar, M.E.M.; Atabani, A.E.; Kalam, M.A.; Imran, M. Modeling Viscosity and Density of Ethanol-Diesel-Biodiesel Ternary Blends for Sustainable Environment. Sustainability 2020, 12, 5186. [Google Scholar] [CrossRef]
- Niculescu, R.; Clenci, A.; Iorga-Siman, V. Review on the use of diesel–biodiesel–alcohol blends in compression ignition engines. Energies 2019, 12, 1194. [Google Scholar] [CrossRef] [Green Version]
- Ali, O.; Mamat, R.; Najafi, G.; Yusaf, T.; Safieddin Ardebili, S. Optimization of biodiesel-diesel blended fuel properties and engine performance with ether additive using statistical analysis and response surface methods. Energies 2015, 8, 14136–14150. [Google Scholar] [CrossRef] [Green Version]
- Sazzad, B.S.; Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H. Retardation of oxidation and material degradation in biodiesel: A review. RSC Adv. 2016, 6, 60244–60263. [Google Scholar] [CrossRef] [Green Version]
- Velmurugan, K.; Sathiyagnanam, A.P. Impact of antioxidants on NO x emissions from a mango seed biodiesel powered DI diesel engine. Alex. Eng. J. 2016, 55, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Sierra-Cantor, J.F.; Guerrero-Fajardo, C.A. Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review. Renew. Sustain. Energy Rev. 2017, 72, 774–790. [Google Scholar] [CrossRef]
- Bhuiya, M.; Rasul, M.; Khan, M.; Ashwath, N. Performance and Emission Characteristics of Binary Mixture of Poppy and Waste Cooking Biodiesel. Energy Procedia 2017, 110, 523–528. [Google Scholar] [CrossRef]
- Mahlia, T.M.I.; Syazmi, Z.A.H.S.; Mofijur, M.; Abas, A.E.P.; Bilad, M.R.; Ong, H.C.; Silitonga, A.S. Patent landscape review on biodiesel production: Technology updates. Renew. Sustain. Energy Rev. 2020, 118, 109526. [Google Scholar] [CrossRef]
- Pradhan, A.; Mbohwa, C. Development of biofuels in South Africa: Challenges and opportunities. Renew. Sustain. Energy Rev. 2014, 39, 1089–1100. [Google Scholar] [CrossRef]
Generation | Feedstock | Fatty Acid Composition | References |
---|---|---|---|
1st | Rapeseed | Monounsaturated fatty acids (Oleic acid + Alpha Lipoic Acid + Linoleic acid) | [41] |
Olive oil | Monounsaturated fatty acids (Oleic acid + Alpha Lipoic Acid + Linoleic acid) | [41] | |
Tea Seed (Camellia Sinensis) | Palmitic acid + Stearic acid + Oleic acid + Linoleic acid + Linolenic acid + Gadoleic acid | [42] | |
Groundnut | Monounsaturated fatty acids (Saturated fatty acids + Linoleic acid) | [41] | |
Amaranth seeds | Monounsaturated fatty acids | [43] | |
Grapeseed | Polyunsaturated fatty acid (Linoleic acid) | [41] | |
Sesame | Polyunsaturated fatty acid (Linoleic acid + Monounsaturated fatty acids) | [41] | |
Sunflower oil | Saturated fatty acids + Monounsaturated fatty acids + Polyunsaturated fatty acid | [41] | |
Okra (Hibiscus esculentus) seed | Behenic acid + Arachidic acid + Linoleic acid + Oleic acid + Stearic acid + Margaric acid + Palmitoleic acid + Palmitic acid + Myristic acid | [44] | |
Rapeseed Palmitic acid + Stearic + Oleic + Linoleic + Linolenic | [45] | ||
Depot margarine | Polyunsaturated fatty acid + saturated fatty acid | [46] | |
2nd Plants | Jatropha tree (Jatropha curcas) | Palmitic acid + Oleic acid + Alpha lipoic Acid | [47] |
Karanja (Pongamia pinnata) | Oleic acid + Linoleic acid + Palmitic acid + Stearic acid | [48] | |
Mahua (Madhuca indica) | Oleic acid + Palmitic acid + Stearic acid+ Lipoic Acid + Adipic acid | [49] | |
Castor bean seed (Ricinus communis) | Palmitic acid + Oleic acid + Pentanoic acid + Octanoic acid + Ricinoleic acid | [50] | |
Neem (Azadirachta indica) | Lipoic + Oleic acid + Oleic acid + Palmitic acid + Arachidic acid + Behenic acid + Lignoceric acid + Palmiticoleic acid | [51] | |
Salicornia begelovii (dwarf saltwort) seed | Linoleic acid + palmitic acid + oleic acid + stearic acid + Linolenic acid | [52] | |
Nagchampa tree | Linoleic acid + Oleic acid + Stearic acid + Palmitic acid | [53] | |
Rubber seed tree (Hevea brasiliensis) | Oleic acid + Linoleic acid + Linolenic acid | [54] | |
Tobacco seed (Nicotiana tabacum) | Palmitic acid + Oleic acid | [55] | |
Meadowfoam (Limnanthes alba L.) seed | Eicosenoic acid + Docosadienoic acid + Erucic acid | [56] | |
Waste oil | (Bakery) Depot margarine | Saturated fatty acid + Monounsaturated fatty acids | [46] |
Sunfoil (triple refined sunflower oil from Restaurant) | Saturated fatty acid + Monounsaturated fatty acids | [46] | |
Frying oil | Palmitic acid + Stearic acid + Oleic acid + Linoleic acid + Linolenic acid | [57] | |
Waste activated sludge | Palmitic acid + heptadecanoic acid + ginkgoid acid + stearic acid + oleic acid + linoleic acid | [58] | |
Animal oil/fat | Pork Lard | Myristic + palmitic + palmitoleic + stearic + oleic + linoleic + linolenic + Arachidonic + docosapentaenoic | [59] |
Beef Tallow | Myristic + palmitic + palmitoleic + stearic + oleic + linoleic + linolenic | [60] | |
Animal fat | Myristic + palmitic + palmitoleic + stearic + oleic + linoleic + linolenic | [61] | |
Poultry Fat | Myristic + palmitic + palmitoleic + stearic + oleic + linoleic + linolenic + Arachidonic + docosapentaenoic + docosahexaenoic | [62] | |
Tallow | Palmitoleic + oleic + stearic + palmitic + myristic | [63] | |
Meat Processing Waste | Myristic + palmitic+ palmitoleic + stearic + oleic + linoleic + linolenic + eicosadienoic + saturated fatty acids | [64] | |
3rd | Cyanobacteria (Fremyella diplosiphon) | Methyl palmitate + hexadecanoic acid + methyl dodecanoate + methyl myristate + hexadecenoate + octadecanoate + octadecenoate + octadecadienoate | [35] |
Algae | Palmitic + stearic + oleic + linoleic | [45] | |
4th | Dunaliella tertiolecta | - | [65] |
Marine alga Nannochloropsis oceanica + oleaginous fungus Mortierella elongata | - | [66] | |
Phaeodactylum tricornutum | Saturated fatty acid + monounsaturated fatty acids + polyunsaturated fatty acid | [67] | |
Phaeodactylum tricornutum Pt4 Co-expression of a yeast diacylglycerolacyl-transferase (ScDGA1) and a plant oleosin (At-OLEO3) | - | [68] | |
Chlamydomonas reinhardtii with overexpressing a Dof-type transcription factor | - | [69] |
Source | Species | Habitat | Reference |
---|---|---|---|
Plants | Triticum aestivum L. | - | [115] |
Pachira aquatica | Seed of Tree, UNESP, Brazil | [116] | |
Coconut (Cocos nucifera linn) seed | NIFOR substation Abak, Akwa Ibom State of Nigeria | [117] | |
Castor Beans | Chiltern Seeds (Ulverston, Cumbria, UK) | [118] | |
Bay Laurel (Laurus nobilis L.) Seeds | Hatay, Turkey | [119] | |
French bean (Phaseolus vulgaris L.) | Landraces of Himachal Pradesh, India | [120] | |
Nigella sativa L. Seed | Denizli region of Turkey | [121] | |
Brassica napus L. | Bangladesh Agriculture Research Institute, Irshardi, Pabna and Rajshahi Local Shaheb Bazar Market. | [122] | |
Rice Bran | Bangalore, India | [123] | |
Jatropha curcas L. | Isiuwa quarters of the Nigerian Institute for Oil Palm Research, Benin City, Nigeria | [124] | |
Lupine seeds | Poland | [125] | |
Bacteria | Streptomyces sp. Al-Dhabi-49 | Soil, Saudi Arabia | [126] |
Chryseobacterium polytrichastri ERMR1:04 | Glacier, Sikkim Himalaya | [127,128] | |
Seeds of African oil bean (Pentaclethra macrophylla Benth) | NIFOR, Benin City | [129] | |
Chryseobacterium sp. strain IHBB 10212 | Glacier top-surface soil, Himalaya, India | [130] | |
Bacillus cereus HSS | Mediterranean Sea, Eastern Harbor, Al Shatby, and Abu-Qir | [131] | |
Thalassospira permensis M35-15 | Sea water and sediments samples | [132] | |
Bacillus subtilis strain Kakrayal_1 | Katra region of Jammu and Kashmir, India | [133] | |
Geobacillus thermoleovorans DA2 | Desert, Southern Sinai | [134] | |
Pelosinus fermentans | Groundwater, Germany | [135] | |
Micrococcus luteus | Agriculture field and garden | [136] | |
Bacillus aerius | Soil and water of hot spring, Shimla | [137] | |
Ralstonia species | Soil sample, Germany | [138] | |
Trichoderma harzianum | Soil sample, Turkey | [139] | |
Acinetobacter baylyi | Marine sludge, Thailand | [140] | |
Serratia marcescens | Raw milk | [141] | |
Fungi | Aspergillus fumigatus | Oil contaminated soil, HRTC workshop, Himachal Pradesh | [142] |
Trichoderma reesei strain RF10625 | Fungal Biodiversity Institute, The Netherlands | [143] | |
Aspergillus niger (strain LFS) | DSM Food Specialties B.V. | [143] | |
Geotrichum sp. | UNICAMP, Brazil | [144] | |
Cunninghamella verticillata | Oil-mill waste | [145] | |
Aspergillus niger | Dept of Biochemistry and Microbiology, University of Plovdiv, Bulgaria | [146] | |
Rhizopus chinensis | (CCTCC) China Center for Type Culture Collection | [147] | |
Penicillium simplicissimum | Waste from the babassu oil industry | [148] | |
Yeast | Limtongella siamensis DMKU-JMGT1-45 | Grease traps, Kasetsart University, Thailand | [149] |
Yarrowia lipolytica | Marine oil-contaminated sludge | [150] | |
Candida rugosa | Sigma-Aldrich Co. (Germany) | [151] |
Lipase Producer | Lipase Activity | Substrate | Reference |
---|---|---|---|
Pseudomonas sp. LSK25 | 50.5 U/mL | Rice bran oil Coconut oil | [156] |
Antarctic Pseudomonas sp. | 130.7 U/mL | Olive oil | [157] |
Candida viswanathii | 101.1 U/mL | Olive oil | [158] |
Pseudomonas sp. LSK25 | 0.35 to 0.4 U/mL | olive oil | [156] |
Aspergillus terreus NCFT 4269.10 | 475U/mL | Sun flower oil | [159] |
Bacillus amyloliquefaciens PS35 | 361 mU/ml | Palm oil | [160] |
Pseudomonas fluorescens Strain AMS8 | 226.69 U/mL | Olive oil | [161] |
Pseudomonas aeuriginosa | 528.54 U/L | Olive oil | [162] |
Penicillium camembertii Thom PG-3 | 422.0 U/mL | Jojoba oil | [163] |
92.8 U/mL | Corn oil | ||
128.0 U/mL | Soybean oil | ||
146.5 U/mL | Rape seed oil | ||
180.0 U/mL | Linseed oil | ||
Colletotrichum gloesporioides 41 | 18.8 U/mL | Olive oil emulsion | [164] |
Source | Strain | Optimum Temperature | Half-Life (t½, min) | References |
---|---|---|---|---|
Geobacillus zalihae | D43E | 70 °C | 135 | [168] |
T118N | 75 | |||
E226D | 165 | |||
N304E | 120 | |||
Rhizopus chinensis | r27RCL | 60 °C | 0.85 | [170] |
m28 | 6.5 | |||
m26 | 4.5 | |||
m28 | 6.5 | |||
m29 | 12.3 | |||
Rhizomucor miehei | WT RML | 2.2 | [171] | |
M7 | 70 °C | 27.5 | ||
Penicillium cyclopium | WT | 66.7 | [58] | |
L41P | 35 °C | 87.3 | ||
G47I | 126 | |||
Rhizopus oryzae | V209L | 4.38 | [172] | |
D262G | 55 °C | 4.2 | ||
Geobacillus thermodenitrificans | AV5 | 50 °C | 289 | [173] |
60 °C | 208 | |||
70 °C | 103 | |||
80 °C | 95 | |||
Bacillus sonorensis | 4R | 80 °C | 150 | [174] |
90 °C | 121.59 | |||
100 °C | 90.01 | |||
110 °C | 70.01 | |||
120 °C | 50 | |||
Bacillus sp. | RSJ-1 | 55 °C | 240 | [175] |
60 °C | 150 | |||
65 °C | 90 | |||
70 °C | 45 | |||
75 °C | 30 | |||
Candida antarctica | 85 °C | 92 | [176] | |
Burkholderia cepacia | ATCC 25609 | 50 °C | 54 | [177] |
60 °C | 46 | |||
Geobacillus sp. | T1 | 65 °C | 315 | [178] |
Lipase Feedstock | Lipase Source | Lipase Name | Lipase Conc. (%) | Temp. (°C) | Time (h) | Molar Ratio (Alcohol/Oil) | Biodiesel Yield (%) | Reference |
---|---|---|---|---|---|---|---|---|
Marine microalga Nannochloropsis | Candida antarctica | Candida antarctica lipase A (CALA) | 10 | 35 | 72 | 8:1 | 40.8 | [184] |
Microalga Chlorella vulgaris | Candida antarcitica | Lipase B (Novozyme 435) | 40 | 40 | 72 | 13:1 | 66.7 | [185] |
Waste sardine oil | Aspergillus niger | Lipase | 10 | 30 | 72 | 9:1 | 94.5 | [186] |
Kernel oil | Thermomyces lanuginosus | Lipozyme TL | 0.25 | 45 | 4.03 | 1.50 | 83.9 | [187] |
Chinese Tallow Kernel oil | Burkholderia cepacia | PS lipase | 20 | 40 | 24 | 4:1 | 55.2 | [188] |
Soapstock from rice bran oil | Candida antarctica | Novozyme 435 | 10 | 40 | 24 | 5:1 | 93.0 | [189] |
Soapstock from rice bran oil | Thermomyces lanuginosus | Lipozyme TL IM | 10 | 30 | 24 | 5:1 | 88.0 | [189] |
Palm oil fatty acid distillate (PFAD) | Candida antarctica | Novozyme 435 | 1 | 60 | 2.5 | 3:1 | 93.0 | [190] |
Tung oil | Rhizopus oryzae | Chimeric lipase | 13 | 40 | 48 | 3.88 | 91.9 | [191] |
Jatropha oil | Enterobacter aerogenes | Lipase | - * | 55 | 48 | 4:1 | 94.0 | [192] |
Waste tallow | Candida antarctica | Lipase B (CALB) Candida antarctica lipase B | 1.25 | 50 | 24 | 30:1 | 99.0 | [193] |
Nanochloropsis oculata microalga | Bacillus sp. S23 | Lipase | 1.5 | 35 | 60 | 12:1 | 95.7 | [194] |
Beef tallow | Burkholderia cepacia | Immobilized lipase | 20 | 50 | 48 | 12:1 | 89.7 | [195] |
Animal fat | Candida antarctica | Immobilized lipase | 10 | 40 | 6 | 50:6 | 79.0 | [196] |
Lard | Candida sp. | Lipase | 20 | 40 | 30 | 3:1 | 87.4 | [197] |
Lard | Candida antarctica | Lipase | 10 | 30 | 72 | 1:1 | 74.0 | [198] |
Lard | Candida antarctica | Lipase | 2–6 | 50 | 20 | 5:1 | 97.2 | [199] |
Used cottonseed oil | Pseudomonas sp. | Lipase | 30 | 37 | 48 | 6:1 | 70.0 | [200] |
Palm oil | Rhodotorula mucilagenosa P 11I89 | Lipase | 0.5 | 30 | 72 | 3:1 | 51.3 | [201] |
Palm oil | Aspergillus niger | Lipase | 2–3 | 25 | 72 | 3:1 | 87.0 | [202] |
Palm oil | Aspergillus niger | Lipase | 2–3 | 40 | 72 | 3:1 | 69.0 | [202] |
Used cooking oil | Rhizopus oryzae PTCC 5174 | Lipase | 15.5 | 35 | 72 | 3:1 | 98.0 | [203] |
Soybean oil | Rhizopus oryzae | Lipase | 5 | 35 | 72 | 3:1 | 89–92 | [204] |
Country | Company Name | Lipase Source | Main Feedstock | Annual Production | Reference |
---|---|---|---|---|---|
USA | Viesel Fuel LLC | Eversa Transform® from A. oryzae | Waste cooking oil, brown grease | 11 million gallons | [210] |
USA | SRS International Co. | Immobilized lipase | Used restaurant oil | 5 million gallons | [211] |
USA | Buster Biofuels | Callera® Trans L lipase from Thermomyces lanuginosus | Brown grease, fish oil | 5 million gallons | [212] |
USA | Blue Sun Energy | Callera® Trans L lipase from Thermomyces lanuginosus | Used cooking oil, palm fatty acid distillate, corn oil | 30 million gallons | [213] |
Israel | TransBiodiesel Ltd. | TransZyme A | Used cooking oil, animal fat, acid oil, brown grease | 50,000 tons | [214] |
Israel | EnzymeCore | TransZyme A | Low-cost oils and fats with high free fatty acid and polar lipid content | 1500 tons | [215] |
South Korea | M-Energy | TransZyme A | Brown grease extracted from grease trap, fat, oil, grease | 30,000 tons | [216] |
India | Aemetis Biorefinery, Inc. | - | Brown grease, low grade used cooking oils, palm fatty acid distillate and other plant oil waste feedstocks | 50 million gallons | [217] |
China | Lvming and Environmental Protection Technology Co. Ltd. | Candida sp. 99–125 lipase | Waste cooking oil | 10,000 tons | [218] |
China | Hunan Rivers Bioengineering Co. Ltd. | Immobilized Novozym 435® (lipase B from Candida antarctica) | Beef tallow, soybean oil | 20,000 tons | [218] |
Brazil | Olfar | Immobilized Callera® Trans L lipase from Thermomyces lanuginosus | Recovered vegetable oil, animal fat, soybean oil | 378 million liters | [219] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zambare, V.; Patankar, R.; Bhusare, B.; Christopher, L. Recent Advances in Feedstock and Lipase Research and Development towards Commercialization of Enzymatic Biodiesel. Processes 2021, 9, 1743. https://doi.org/10.3390/pr9101743
Zambare V, Patankar R, Bhusare B, Christopher L. Recent Advances in Feedstock and Lipase Research and Development towards Commercialization of Enzymatic Biodiesel. Processes. 2021; 9(10):1743. https://doi.org/10.3390/pr9101743
Chicago/Turabian StyleZambare, Vasudeo, Rutuja Patankar, Bhushan Bhusare, and Lew Christopher. 2021. "Recent Advances in Feedstock and Lipase Research and Development towards Commercialization of Enzymatic Biodiesel" Processes 9, no. 10: 1743. https://doi.org/10.3390/pr9101743
APA StyleZambare, V., Patankar, R., Bhusare, B., & Christopher, L. (2021). Recent Advances in Feedstock and Lipase Research and Development towards Commercialization of Enzymatic Biodiesel. Processes, 9(10), 1743. https://doi.org/10.3390/pr9101743