Ecological Restoration of Wetland Polluted by Heavy Metals in Xiangtan Manganese Mine Area
Abstract
:1. Introduction
2. Research Methods
2.1. Overview of the Study Area
2.2. Ecological Restoration Plan
2.2.1. Restoration of Mountains Surrounding the Wetland
2.2.2. Ground Ecological Restoration Preparation
- (1)
- Repair plant screening and the construction of plant resource library
- (2)
- Construction of the surface runoff ecological interception system for polluted soil
- (3)
- Construction of the artificial wetland system
2.2.3. Wetland Ecological Restoration was Implemented
- (1)
- Repair plant screening
- (2)
- Polluted soil surface runoff ecological interception zone project
2.3. Measurement of Heavy Metal Content
2.4. Statistics and Analysis Methods
3. Results
3.1. Soil Physical and Chemical Properties
3.2. Soil Content of Heavy Metals
3.3. Screening of the Plant Survival Status
3.4. Heavy Metal Content in the Plant Body
- (1)
- Heavy metal content in the land plant roots
- (2)
- Heavy metal content in the wetland plant
3.5. Control Status of Heavy Metals Pollution
4. Discussion
5. Conclusions
- (1)
- The Mn content of different parts of Koelreuteria paniculata root from high to low order: fine root > small root > medium root > large root. The Mn content of different parts of Elaeocarpus decipiens root from high to low order: large root > medium root > small root > fine root.
- (2)
- The Mn content in wetland restoration plants varies from high to low order is as follows: Canna warscewiezii > Thalia dealbata > Boehmeria > Pontederia cordata > Typha orientalis > Nerium oleander > Softstem bulrush > Iris germanica > Acorus calamus > Arundo donax > Phragmites australis; Internal Cu content from high to low order is as follows: Acorus calamus > Thalia dealbata > Softstem bulrush > Canna warscewiezii > Typha orientalis > Arundo donax > Boehmeria > Iris germanica > Pontederia cordata > Nerium oleander > Phragmites australis; Zn content from high to low order is as follows: Canna warscewiezii > Acorus calamus > Thalia dealbata > Typha orientalis > Pontederia cordata > Arundo donax > Softstem bulrush > Iris germanica > Boehmeria > Phragmites australis > Nerium oleander; Internal Cd content from high to low order is as follows: Phragmites australis > Softstem bulrush > Thalia dealbata > Nerium oleander > Nerium oleander > Boehmeria > Canna warscewiezii > Acorus calamus > Iris germanica > Typha orientalis > Pontederia cordata > Arundo donax.
- (3)
- The contents of Mn, Pb, Zn, Cd, and Cu in the soil and wetland in the polluted area far exceed the national standards, which indicates that manganese is not the only polluting element in manganese ore polluted area. In the treatment of heavy metals contaminated area, it is necessary to take appropriate measures to further control the possible harm caused by other heavy metals. The content of Cu in the water sample in the control area is lower than the national standard. The test data show that the impact of Cu on the water environment in the manganese ore polluted area does not pose a potential threat.
- (4)
- The N.L.Nemerow (pollution index) method and isotope tracing technology shall be combined to scientifically evaluate the pollution degree of manganese ore polluted area to the surrounding areas.
- (5)
- The evaluation indexes of soil environmental geochemical evaluation shall be used to evaluate the pollution of heavy metals and put forward a more reasonable ecological restoration scheme.
- (6)
- Monitoring of the operation effect of the ecological interception and treatment system should be continued. Further improvement of the design of soil leakage and surface runoff collection and treatment system and further study of the biological role of ecological interception and treatment system should be achieved.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Hashimoto, S.; Moriguchi, Y.; Yue, Q.; Lu, Z. Resource use in growing China: Past trends, influence factors, and future demand. J. Ind. Ecol. 2012, 16, 481–492. [Google Scholar] [CrossRef]
- Xiang, J.; Chen, J.; Bagas, L.; Li, S.; Wei, H.; Chen, B. Southern China’s manganese resource assessment: An overview of resource status, mineral system, and prediction model. Ore Geol. Rev. 2020, 116, 103261. [Google Scholar] [CrossRef]
- Jordan, G. Sustainable mineral resources management: From regional mineral resources exploration to spatial contamination risk assessment of mining. Environ. Geol. 2009, 58, 153. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Xu, Y.S.; Shen, S.L.; Yuan, Y.; Yin, Z.Y. Mining-induced geo-hazards with environmental protection measures in Yunnan, China: An overview. Bull. Eng. Geol. Environ. 2015, 74, 141–150. [Google Scholar] [CrossRef]
- Todorova, E.; Kostadinova, A. Risks of environmental pollution from mining waste from ore-containing Cu processing. J. Environ. Protect. Ecol. 2019, 20, 397–403. [Google Scholar]
- Efendieva, Z.J.; Khalifazade, C.M. Economic problems and environmental challenges in ore mining in Azerbaijan. J. Min. Sci. 2018, 54, 166–172. [Google Scholar] [CrossRef]
- Attuquayefio, D.K.; Owusu, E.H.; Ofori, B.Y. Impact of mining and forest regeneration on small mammal biodiversity in the Western Region of Ghana. Environ. Monit. Assess. 2017, 189, 237. [Google Scholar] [CrossRef] [PubMed]
- Kayet, N.; Pathak, K.; Chakrabarty, A.; Kumar, S.; Singh, C.P.; Chowdary, V.M. Assessment of mining activities on tree species and diversity in hilltop mining areas using Hyperion and Landsat data. Environ. Sci. Pollut. Res. 2020, 27, 42750–42766. [Google Scholar] [CrossRef]
- Sutkowska, K.; Teper, L.; Czech, T.; Hulok, T.; Olszak, M.; Zogala, J. Quality of Peri-Urban Soil Developed from Ore-Bearing Carbonates: Heavy Metal Levels and Source Apportionment Assessed Using Pollution Indices. Minerals 2020, 10, 1140. [Google Scholar] [CrossRef]
- Tyszka, R.; Pietranik, A.; Potysz, A.; Kierczak, J.; Schulz, B. Experimental simulations of ZnPb slag weathering and its impact on the environment: Effects of acid rain, soil solution, and microbial activity. J. Geochem. Explor. 2021, 228, 106808. [Google Scholar] [CrossRef]
- Ettler, V.; Štěpánek, D.; Mihaljevič, M.; Drahota, P.; Jedlicka, R.; Kříbek, B.; Vaněk, A.; Penížek, B.; Sracek, O.; Nyambe, I. Slag dusts from Kabwe (Zambia): Contaminant mineralogy and oral bioaccessibility. Chemosphere 2020, 260, 127642. [Google Scholar] [CrossRef] [PubMed]
- Baran, A.; Wieczorek, J.; Mazurek, R.; Urbański, K.; Klimkowicz-Pawlas, A. Potential ecological risk assessment and predicting zinc accumulation in soils. Environ. Geochem. Health 2018, 40, 435–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieczorek, J.; Baran, A.; Urbański, K.; Mazurek, R.; Klimowicz-Pawlas, A. Assessment of the pollution and ecological risk of lead and cadmium in soils. Environ. Geochem. Health 2018, 40, 2325–2342. [Google Scholar] [CrossRef] [PubMed]
- Zang, Z.; Li, Y.; Li, H.; Guo, Z.; Zhang, R. Spatiotemporal variation and pollution assessment of Pb/Zn from smelting activities in China. Int. J. Environ. Res. Public Health 2020, 17, 1968. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, J.; Zhu, L.; Chen, X.; Ma, Q.; Wang, L.; Wang, X.; Yan, W. A High-Safety and Multifunctional MOFs Modified Aramid Nanofiber Separator for Lithium-Sulfur Batteries. Chem. Eng. J. 2021, 411, 128540. [Google Scholar] [CrossRef]
- Vaněk, A.; Grösslová, Z.; Mihaljevič, M.; Ettler, V.; Trubač, J.; Chrastný, V.; Penížek, V.; Teper, L.; Cabala, J.; Voegelin, A.; et al. Thallium isotopes in metallurgical wastes/contaminated soils: A novel tool to trace metal source and behavior. J. Hazard. Mater. 2018, 343, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Baieta, R.; Mihaljevič, M.; Ettler, V.; Vaněk, A.; Penížek, V.; Trubač, J.; Kříbek, B.; Ježek, J.; Svoboda, M.; Sracek, O.; et al. Depicting the historical pollution in a Pb-Zn mining/smelting site in Kabwe (Zambia) using tree rings. ADS 2021, 181, 104246. [Google Scholar]
- Chrastný, V.; Vaněk, A.; Teper, L.; Cabala, J.; Procházka, J.; Pechar, L.; Drahota, P.; Penížek, V.; Komárek, M.; Novák, M. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: Effects of land use, type of contamination and distance from pollution source. Environ. Monit. Assess. 2012, 184, 2517–2536. [Google Scholar] [CrossRef]
- Zhu, J.W.; Xiang, Y.C.; Yu, G.H.; Mo, H.W.; Chen, Z. Study on Spatial Distribution of Heavy Metals Pollution in Manganese Mine Land. Environ. Sci. Manag. 2019, 44, 35–38. [Google Scholar]
- Fang, X.; Tian, D.L.; Xie, R.X. Soil physical and chemical properties of the wasteland in Xiangtan manganese mine. Acta Ecol. Sin. 2006, 26, 1494–1501. [Google Scholar]
- Jiang, F.; Ren, B.; Hursthouse, A.S.; Zhou, Y. Trace metal pollution in topsoil surrounding the Xiangtan manganese mine area (South-Central China): Source identification, spatial distribution and assessment of potential ecological risks. Int. J. Environ. Res. Public Health 2018, 15, 2412. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.Y.; Ren, B.Z. Predict three-dimensional soil manganese transport by HYDRUS-1D and spatial interpolation in Xiangtan manganese mine. J. Clean. Product. 2021, 292, 125879. [Google Scholar] [CrossRef]
- Zhu, G.H.; Wang, C.; Li, L.; Chen, J.; Wen, Y.; Li, S.Y. Poluution characteristics and ecological risk assessment of soil in xiangtan jinshi manganese mining area. J. Anhui Agric. Sci. 2018, 46, 48–52. [Google Scholar]
- Kandziora-Ciupa, M.; Ciepał, R.; Nadgórska-Socha, A.; Barczyk, G. A comparative study of heavy metal accumulation and antioxidant responses in Vaccinium myrtillus L. leaves in polluted and non-polluted areas. Environ. Sci. Pollut. Res. Int. 2013, 20, 4920–4932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, B.H.; Hcblane, M.; Daniel, P.; Robert, R.B.; John, H.K.; Paul, E.H.G. The potential of Thlaspi caerulescens for phytoremediation of contaminatcd soils. Plant Soil 1998, 203, 47–56. [Google Scholar] [CrossRef]
- Bai, X.Y.; Liu, H.H.; Hu, H.H.; Qin, F.; Su, X.L. Research progress and development trend of flower phytoremediation technology for heavy metal contaminated soil. J. Anhui Agric. Sci. 2009, 37, 8672–8674. [Google Scholar]
- Wu, Z.Q.; Gu, S.Y.; Li, H.Y.; Wang, C.M. Phytoremediation of Heavy Metal S-Contaminated Soils and Hyper-Accumulator’s Research Advance. Environ. Sci. Manag. 2007, 3, 65–67. [Google Scholar]
- Yang, X.Y.; Lei, H.Q.; Li, F.Y.; Yan, T.J.; Wu, Z.G.; He, J.H. Sieves for ecological restoration of plant species in abandoned alum mines. Sci. Silvae Sin. 2009, 145, 14–18. [Google Scholar]
- Tang, S.R.; Wilke, B.M.; Huang, C.Y. The uptake of Cu by plants dominantly growing on Cu mining spoils along the Yangtze River, the People’s Republic of China. Plant Soil 1999, 209, 225–232. [Google Scholar] [CrossRef]
- Nadgórska-Socha, A.; Kafel, A.; Kandziora-Ciupa, M.; Gospodarek, J.; Zawisza-Raszka, A. Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environ. Sci. Pollut. Res. Int. 2013, 20, 1124–1134. [Google Scholar] [CrossRef]
- Ye, C.; Li, C.H.; Yu, H.C.; Song, X.F.; Zou, G.Y.; Jie, L. Study on ecological restoration in near-shore zone of a eutrophic lake, wuli bay, taihu lake. Ecol. Eng. 2012, 37, 1434–1437. [Google Scholar] [CrossRef]
- Yu, D.; Jiang, Y.; Wang, Z.H.; Zheng, C.Y.; Zhu, J.L.; Wang, X.P.; Sheng, Z.H.; Fang, J.Y.; Tang, Z.X.; He, J.S. Methods and protocols for plant community inventory. Biodivers. Sci. 2009, 17, 533–548. [Google Scholar]
NO3-N | AP | SOC | K | pH | <0.002 mm Clay | 0.002–0.02 mm Silt | 0.02–2 mm Sand | ||
---|---|---|---|---|---|---|---|---|---|
Ecological restoration sites | Mean | 1.202 a | 0.932 a | 30.048 a | 5.945 a | 5.03 a | 26.514 a | 41.708 a | 31.778 a |
P | 0.02 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.004 | 0.006 | |
F0.05 | 2.56 | 9.02 | 3.88 | 7.002 | 15.27 | 5.611 | 4.579 | 5.021 | |
Non ecological restoration sites | Mean | 0.710 b | 0.530 b | 15.239 b | 5.466 b | 4.380 b | 51.397 b | 31.890 b | 16.713 b |
P | 0.01 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.004 | 0.006 | |
F0.05 | 0.16 | 0.11 | 5.07 | 2.08 | 1.02 | 10.245 | 3.452 | 1.498 |
Mn (mg/kg) | Fe (mg/kg) | Cu (mg/kg) | Zn (mg/kg) | Pb (mg/kg) | Cd (mg/kg) | pH | ||
---|---|---|---|---|---|---|---|---|
Ecological restoration sites | Mean | 18,056.942 a | 10,562.488 a | 13.094 a | 3222.432 a | 3194.613 a | 32.926 a | 5.037 a |
P | 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | |
F | 184.190 | 133,424 | 3.381 | 27.902 | 31.231 | 7.76 | 0.568 | |
Non ecological restoration sites | Mean | 19,688.578 b | 13,068.567 b | 18.004 b | 3489.871 b | 3514.735 b | 40.954 b | 4.47 b |
P | 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | |
F | 199.152 | 162.025 | 3.565 | 37.451 | 36.980 | 12.667 | 0.523 | |
National standard levels (Grade III) | - | - | 400 | 500 | 500 | 1.0 | - |
Part | Mn | Fe | Cu | Zn | Pb | Cd | |
---|---|---|---|---|---|---|---|
Koelreuteria paniculata | Big root | 240.29 ± 23.33a | 104.95 ± 9.23a | 4.06 ± 0.79a | 24.95 ± 4.85a | 4.69 ± 0.64a | 0.38 ± 0.05a |
Medium root | 248.28 ± 41.88a | 173.27 ± 41.29b | 5.82 ± 0.34b | 25.97 ± 0.83a | 4.81 ± 1.41a | 0.45 ± 0.06a | |
Small root | 295.89 ± 8.72a | 331.58 ± 181.32c | 6.21 ± 0.45c | 26.92 ± 4.12a | 5.44 ± 1.17a | 0.42 ± 0.025a | |
Fine root | 419.28 ± 71.02b | 530.56 ± 206.66d | 9.26 ± 2.30d | 37.83 ± 4.05b | 9.49 ± 1.72b | 0.42 ± 0.18a | |
Elaeocarpus sylvestris | Big root | 433.65 ± 26.05a | 122.11 ± 33.18a | 2.53 ± 0.27a | 8.44 ± 2.53a | 2.95 ± 0.35a | 0.98 ± 0.16a |
Medium root | 345.84 ± 48.09b | 173.32 ± 66.14b | 4.84 ± 0.21b | 10.31 ± 1.22b | 3.20 ± 0.23b | 0.76 ± 0.09a | |
Small root | 335.42 ± 26.63b | 524.56 ± 128.19c | 5.93 ± 0.17c | 15.79 ± 0.95c | 3.78 ± 0.29c | 0.76 ± 0.07a | |
Fine root | 286.31 ± 86.96c | 689.11 ± 141.87d | 7.93 ± 0.74d | 25.01 ± 2.30d | 7.80 ± 0.85b | 1.04 ± 0.04a | |
Soil heavy metal contents | 18,056 ± 109.45a | 10,562.49 ± 163.66a | 13.10 ± 3.65a | 3222.43 ± 26.37a | 3194.613 ± 7.52a | 32.962 ± 0.15a | |
National standard levels (Grade III) | - | - | 400 | 500 | 500 | 1.0 |
Sample Type | Sampling Point | Mn | Pb | Zn | Cd | Cu |
---|---|---|---|---|---|---|
Soil samples | Total soil content | 18,056.9 | 3194.6 | 3222.4 | 32.9 | 13.1 |
water samples | Control (no interception) | 27.03 | 0.9 | 2.65 | 0.08 | 0.02 |
Treatment system import | 26.77 | 0.57 | 2.66 | 0.06 | 0.05 | |
Primary wetland unit | 23.7 | 0.46 | 0.48 | 0.04 | 0.01 | |
Secondary wetland unit | 0.1 | 0.1 | 0.05 | 0.01 | - | |
Tertiary wetland unit | / | / | / | / | / | |
Standard [GB 18918-2002] | 2 | 0.1 | 1 | 0.01 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Jiao, Y.; Zhao, M.; Wang, G.; Wang, D.; Xiao, W.; Li, H.; Xu, Z.; Jiang, Y. Ecological Restoration of Wetland Polluted by Heavy Metals in Xiangtan Manganese Mine Area. Processes 2021, 9, 1702. https://doi.org/10.3390/pr9101702
Lin Y, Jiao Y, Zhao M, Wang G, Wang D, Xiao W, Li H, Xu Z, Jiang Y. Ecological Restoration of Wetland Polluted by Heavy Metals in Xiangtan Manganese Mine Area. Processes. 2021; 9(10):1702. https://doi.org/10.3390/pr9101702
Chicago/Turabian StyleLin, Yang, Yunan Jiao, Meifang Zhao, Guangjun Wang, Deming Wang, Wei Xiao, Huajun Li, Zhuo Xu, and Yuqi Jiang. 2021. "Ecological Restoration of Wetland Polluted by Heavy Metals in Xiangtan Manganese Mine Area" Processes 9, no. 10: 1702. https://doi.org/10.3390/pr9101702