Improvement of Water Solubility of Mercaptoundecahydrododecaborate (BSH)-Peptides by Conjugating with Ethylene Glycol Linker and Interaction with Cyclodextrin
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. BSH Peptides
2.3. Synthesis of BSH Peptides
2.4. Evaluation of the Water Solubility of BSH Peptides by RP-HPLC
3. Results and Discussion
3.1. Solubility of BSH-3R with or without CD
3.2. Plots of Water Solubility of BSH-3R against CD
3.3. Solubility of BSH-nR with or without γ-CD
3.4. Solubility of BSH-nEg-3R with or without γ-CD
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barth, R.F.; Vicente, M.G.H.; Harling, O.K.; Kiger III, W.S.; Riley, K.J.; Binns, P.J.; Franz, M.; Wagner, F.M.; Suzuki, M.; Aihara, T.; et al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol. 2012, 7, 146–166. [Google Scholar] [CrossRef] [PubMed]
- Kato, I.; Ono, K.; Sakurai, Y.; Ohmae, M.; Maruhashi, A.; Imahori, Y.; Kirihata, M.; Nakazawa, M.; Yura, Y. Effectiveness of BNCT for recurrent head and neck malignancies. Appl. Radiat. Isot. 2004, 61, 1069–1073. [Google Scholar] [CrossRef]
- Hu, K.; Yang, Z.; Zhang, L.; Xie, L.; Wang, L.; Xu, H.; Josephson, L.; Liang, S.H.; Zhang, M.-R. Boron agents for neutron capture therapy. Coord. Chem. Rev. 2020, 405, 213139–213158. [Google Scholar] [CrossRef]
- Barth, R.F.; Mi, P.; Yang, W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun. 2018, 38, 35. [Google Scholar] [CrossRef] [PubMed]
- Michiue, H.; Sakurai, Y.; Kondo, N.; Kitamatsu, M.; Bin, F.; Nakajima, K.; Hirota, Y.; Kawabata, S.; Nishiki, T.; Ohmori, I.; et al. The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials 2014, 35, 3396–3405. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Kusaka, S.; Mukumoto, M.; Uehara, K.; Asano, T.; Suzuki, M.; Masunaga, S.; Ono, K.; Tanimori, S.; Kirihata, M. Biological evaluation of dodecaborate-containing L-amino acids for boron neutron capture therapy. J. Med. Chem. 2012, 55, 6980–6984. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, Y.; Michiue, H.; Kitamatsu, M.; Hayashi, Y.; Takenaka, F.; Nishiki, T.; Matsui, H. Tumor-specific delivery of BSH-3R for boron neutron capture therapy and positron emission tomography imaging in a mouse brain tumor model. Biomaterials 2015, 56, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, S.; Miyatake, S.; Kuroiwa, T.; Yokoyama, K.; Doi, A.; Iida, K.; Miyata, S.; Nonoguchi, N.; Michiue, H.; Takahashi, M.; et al. Boron neutron capture therapy for newly diagnosed glioblastoma. J. Radiat. Res. 2009, 50, 51–60. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Pooh, K.; Kobayashi, T.; Kageji, T.; Uyama, S.; Matsumura, A.; Kumada, H. Clinical review of the Japanese experience with boron neutron capture therapy and a proposed strategy using epithermal neutron beams. J. Neuro-Oncol. 2003, 62, 87–99. [Google Scholar] [CrossRef]
- Assaf, K.I.; Suckova, O.; Danaf, N.A.; Glasenapp, V.; Gabel, D.; Nau, W.M. Dodecaborate-functionalized anchor dyes for cyclodextrin-based indicator displacement applications. Org. Lett. 2016, 18, 932–935. [Google Scholar] [CrossRef] [PubMed]
- Assaf, K.I.; Ural, M.S.; Pan, F.; Georgiev, T.; Simova, S.; Rissanen, K.; Gabel, D.; Nau, W.M. Water structure recovery in chaotropic anion recognition: High-affinity binding of dodecaborate clusters to γ-cyclodextrin. Angew. Chem. Int. Ed. 2015, 54, 6852–6856. [Google Scholar] [CrossRef] [PubMed]
- Ohta, K.; Konno, S.; Endo, Y. Complexation of β-cyclodextrin with carborane derivatives in aqueous solution. Tetrahedron Lett. 2008, 49, 6525–6528. [Google Scholar] [CrossRef]
- Ohta, K.; Konno, S.; Endo, Y. Complexation of α-cyclodextrin with carborane derivatives in aqueous solution. Chem. Pharm. Bull. 2009, 57, 307–310. [Google Scholar] [CrossRef][Green Version]
- Assaf, K.I.; Begaj, B.; Frank, A.; Nilam, M.; Mougharbel, A.S.; Kortz, U.; Nekvinda, J.; Grüner, B.; Gabel, D.; Nau, W.M. High-affinity binding of metallacarborane cobalt bis(dicarbollide) anions to cyclodextrins and application to membrane translocation. J. Org. Chem. 2019, 84, 11790–11798. [Google Scholar] [CrossRef] [PubMed]
- Neirynck, P.; Schimer, J.; Jonkheijm, P.; Milroy, L.-G.; Cigler, P.; Brunsveld, L. Carborane–β-cyclodextrin complexes as a supramolecular connector for bioactive surfaces. J. Mater. Chem. B 2015, 3, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Zhou, D.; Zheng, X.; Qi, Y.; Wang, Y.; Jing, X.; Huang, Y. Stable amphiphilic supramolecular self-assembly based on cyclodextrin and carborane for the efficient photodynamic therapy. Chem. Commun. 2017, 53, 3422–3425. [Google Scholar] [CrossRef] [PubMed]
- Nekvinda, J.; Grüner, B.; Gabel, D.; Nau, W.M.; Assaf, K.I. Host–guest chemistry of carboranes: Synthesis of carboxylate derivatives and their binding to cyclodextrins. Chem. Eur. J. 2018, 24, 12970–12975. [Google Scholar] [CrossRef]
- Assaf, K.I.; Hennig, A.; Peng, S.; Guo, D.-S.; Gabel, D.; Nau, W.M. Hierarchical host–guest assemblies formed on dodecaborate-coated gold nanoparticles. Chem. Commun. 2017, 53, 4616–4619. [Google Scholar] [CrossRef]
- Futaki, S. Membrane-permeable arginine-rich peptides and the translocation mechanisms. Adv. Drug Deliv. Rev. 2005, 57, 547–558. [Google Scholar] [CrossRef]
- Kosuge, M.; Takeuchi, T.; Nakase, I.; Jones, A.T.; Futaki, S. Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans. Bioconjugate Chem. 2008, 19, 656–664. [Google Scholar] [CrossRef]
- Hitsuda, T.; Michiue, H.; Kitamatsu, M.; Fujimura, A.; Wang, F.; Yamamoto, T.; Han, X.-J.; Tazawa, H.; Uneda, A.; Ohmori, I.; et al. A protein transduction method using oligo-arginine (3R) for the delivery of transcription factors into cell nuclei. Biomaterials 2012, 33, 4665–4672. [Google Scholar] [CrossRef]
- Irie, T.; Otagiri, M.; Sunada, M.; Uekama, K.; Ohtani, Y.; Yamada, Y.; Sugiyama, Y. Cyclodextrin induced hemolysis and shape changes of human erythrocytes in vitro. J. Pharm. Dyn. 1982, 5, 741–744. [Google Scholar] [CrossRef]
- Nakase, I.; Katayama, M.; Hattori, Y.; Ishimura, M.; Inaura, S.; Fujiwara, D.; Takatani-Nakase, T.; Fujii, I.; Futaki, S.; Kirihata, M. Intracellular target delivery of cell-penetrating peptide-conjugated dodecaborate for boron neutron capture therapy (BNCT). Chem. Commun. 2019, 55, 13955–13958. [Google Scholar] [CrossRef]
- Sharon, P.; Afri, M.; Mitlin, S.; Gottlieb, L.; Schmerling, B.; Grinstein, D.; Welner, S.; Frimer, A.A. Preparation and characterization of bis(guanidinium) and bis(aminotetrazolium)dodecahydroborate salts: Green high energy nitrogen and boron rich compounds. Polyhedron 2019, 157, 71–89. [Google Scholar] [CrossRef]
- Linde, G.A.; Junior, A.L.; de Faria, E.V.; Colauto, N.B.; de Moraes, F.F.; Zanin, G.M. The use of 2D NMR to study β-cyclodextrin complexation and debittering of amino acids and peptides. Food Res. Int. 2010, 43, 187–192. [Google Scholar] [CrossRef]
- Huh, K.M.; Ooya, T.; Sasaki, S.; Yui, N. Polymer inclusion complex consisting of poly(ε-lysine) and α-cyclodextrin. Macromolecules 2001, 34, 2402–2404. [Google Scholar] [CrossRef]
- Zhao, R.; Sandström, C.; Zhang, H.; Tan, T. NMR study on the inclusion complexes of β-cyclodextrin with isoflavones. Molecules 2016, 21, 372. [Google Scholar] [CrossRef]
- Kost, B.; Brzeziński, M.; Zimnicka, M.; Socka, M.; Wielgus, E.; Słowianek, M.; Biela, T. PLA stereocomplexed microspheres modified with methyl-b-cyclodextrin an an atropine delivery system. Synthesis and characterization. Mater. Today Commun. 2020, 25, 101605–101615. [Google Scholar] [CrossRef]
- Crupi, V.; Ficarra, R.; Guardo, M.; Majolino, D.; Stancanelli, R.; Venuti, V. UV-vis and FTIR-ATR spectroscopic technique to study the inclusion complexes of genistein with β-cyclodextrins. J. Pharm. Biomed. Anal. 2007, 44, 110–117. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitamatsu, M.; Nakamura-Tachibana, A.; Ishikawa, Y.; Michiue, H. Improvement of Water Solubility of Mercaptoundecahydrododecaborate (BSH)-Peptides by Conjugating with Ethylene Glycol Linker and Interaction with Cyclodextrin. Processes 2021, 9, 167. https://doi.org/10.3390/pr9010167
Kitamatsu M, Nakamura-Tachibana A, Ishikawa Y, Michiue H. Improvement of Water Solubility of Mercaptoundecahydrododecaborate (BSH)-Peptides by Conjugating with Ethylene Glycol Linker and Interaction with Cyclodextrin. Processes. 2021; 9(1):167. https://doi.org/10.3390/pr9010167
Chicago/Turabian StyleKitamatsu, Mizuki, Ayaka Nakamura-Tachibana, Yoshimichi Ishikawa, and Hiroyuki Michiue. 2021. "Improvement of Water Solubility of Mercaptoundecahydrododecaborate (BSH)-Peptides by Conjugating with Ethylene Glycol Linker and Interaction with Cyclodextrin" Processes 9, no. 1: 167. https://doi.org/10.3390/pr9010167
APA StyleKitamatsu, M., Nakamura-Tachibana, A., Ishikawa, Y., & Michiue, H. (2021). Improvement of Water Solubility of Mercaptoundecahydrododecaborate (BSH)-Peptides by Conjugating with Ethylene Glycol Linker and Interaction with Cyclodextrin. Processes, 9(1), 167. https://doi.org/10.3390/pr9010167