A Hybrid of Particle Swarm Optimization and Harmony Search to Estimate Kinetic Parameters in Arabidopsis thaliana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Problem Formulation
2.2. Particle Swarm Optimization (PSO)
2.3. Harmony Search (HS)
2.4. A Hybrid of PSO and HS (PSOHS)
2.4.1. Initialization
2.4.2. Iteration
2.4.3. Hybridization of Harmony Search
2.4.4. Termination
3. Experimental Setup
Experiment Setup (Computational Approach)
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Parsopoulos, K.E.; Vrahatis, M.N. Particle Swarm Optimization and Intelligence: Advances and Applications; IGI Global: Hershey, PA, USA, 2010. [Google Scholar]
- Sun, J.; Garibaldi, J.M.; Hodgman, C. Parameter Estimation Using Metaheuristics in Systems Biology: A Comprehensive Review. IEEE/ACM Trans. Comput. Biol. Bioinform. 2012, 9, 185–202. [Google Scholar] [CrossRef] [PubMed]
- Horst, R.; Pardalos, P.M.; Thoai, N.V. Introduction to Global Optimization; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Baker, S.M.; Schallau, K.; Junker, B.H. Comparison of different algorithms for simultaneous estimation of multiple parameters in kinetic metabolic models. J. Integr. Bioinform. 2010, 7, 254–262. [Google Scholar] [CrossRef]
- Valderrama-Bahamóndez, G.I.; Fröhlich, H. MCMC Techniques for Parameter Estimation of ODE Based Models in Systems Biology. Front. Appl. Math. Stat. 2019, 5, 55. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Campbell, K.S. Interactions between Connected Half-Sarcomeres Produce Emergent Mechanical Behavior in a Mathematical Model of Muscle. PLoS Comput. Biol. 2009, 5, e1000560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Remli, M.A.; Deris, S.; Mohamad, M.S.; Omatu, S.; Corchado, J.M. An enhanced scatter search with combined opposition-based learning for parameter estimation in large-scale kinetic models of biochemical systems. Eng. Appl. Artif. Intell. 2017, 62, 164–180. [Google Scholar] [CrossRef] [Green Version]
- Remli, M.A.; Mohamad, M.S.; Deris, S.; Samah, A.A.; Omatu, S.; Corchado, J.M. Cooperative enhanced scatter search with opposition-based learning schemes for parameter estimation in high dimensional kinetic models of biological systems. Expert Syst. Appl. 2019, 116, 131–146. [Google Scholar] [CrossRef]
- Tangherloni, A.; Spolaor, S.; Cazzaniga, P.; Besozzi, D.; Rundo, L.; Mauri, G.; Nobile, M.S. Biochemical parameter estimation vs. benchmark functions: A comparative study of optimization performance and representation design. Appl. Soft Comput. 2019, 81, 105494. [Google Scholar] [CrossRef]
- Fu, W.; Johnston, M.; Zhang, M. Hybrid Particle Swarm Optimisation Algorithms Based on Differential Evolution and Local Search. In Proceedings of the AI 2010: Advances in Artificial Intelligence Lecture Notes in Computer Science, Adelaide, Australia, 7–10 December 2010; pp. 313–322. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G. A New Heuristic Optimization Algorithm: Harmony Search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Ng, S.T.; Chong, C.K.; Choon, Y.W.; Chai, L.E.; Deris, S.; Illias, R.M.; Shamsir, M.S.; Mohamad, M.S. Estimating Kinetic Parameters for Essential Amino Acid Production in Arabidopsis Thaliana by Using Particle Swarm Optimization. J. Teknol. 2013, 64. [Google Scholar] [CrossRef] [Green Version]
- Geem, Z.W. Recent Advances in Harmony Search Algorithm; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; Volume 270. [Google Scholar]
- Gao, X.Z.; Govindasamy, V.; Xu, H.; Wang, X.; Zenger, K. Harmony search method: Theory and applications. Comput. Intell. Neurosci. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Geem, Z.W. Review of harmony search with respect to algorithm structure. Swarm Evol. Comput. 2019, 48, 31–43. [Google Scholar] [CrossRef]
- Lee, K.S.; Geem, Z.W.; Lee, S.H.; Bae, K.W. The harmony search heuristic algorithm for discrete structural optimization. Eng. Optim. 2005, 37, 663–684. [Google Scholar] [CrossRef]
- Curien, G.; Bastien, O.; Robert-Genthon, M.; Cornish-Bowden, A.; Cárdenas, M.L.; Dumas, R. Understanding the regulation of aspartate metabolism using a model based on measured kinetic parameters. Mol. Syst. Biol. 2009, 5, 271. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.C.; Covert, M.W. An energetic reformulation of kinetic rate laws enables scalable parameter estimation for biochemical networks. J. Theor. Biol. 2019, 461, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Tang, X.; Li, Y.; Yeboah, M.O. An improved differential-based harmony search algorithm with linear dynamic domain. Knowl. -Based Syst. 2020, 187, 104809. [Google Scholar] [CrossRef]
Dataset | Aspartate Metabolism |
---|---|
Plant model | Arabidopsis thaliana |
Download link | https://www.ebi.ac.uk/biomodels-main/BIOMD0000000212 [19] |
Algorithms | PSOHS | Downhill Simplex Method | SA |
---|---|---|---|
Measurements | |||
Computational time (seconds) | 100.23 | 130.56 | 778.00 |
Average squared error, A | 0.0003 | 0.0008 | 0.0012 |
Standard deviation, STD | 0.0002 | 0.0004 | 0.002 |
Algorithms | PSOHS | Downhill Simplex Method | SA |
---|---|---|---|
Measurements | |||
Computational time (seconds) | 184.03 | 376.59 | 1518.05 |
Average squared error, A | 0.0211 | 0.084 | 0.0406 |
Standard deviation, STD | 0.0133 | 0.0998 | 0.0347 |
Algorithms | PSOHS | Downhill Simplex Method | SA |
---|---|---|---|
Measurements | |||
Computational time (seconds) | 255.37 | 362.32 | 1794.91 |
Average squared error, A | 0.0024 | 0.012 | 0.0066 |
Standard deviation, STD | 0.0037 | 0.017 | 0.0079 |
Parameters | Experimental [19] | PSOHS | Downhill Simplex Method | SA |
---|---|---|---|---|
Vtd_TD_k_app_exp | 0.0124 | 0.0101 | 0.0138 | 0.0156 |
Vtd_TD_Ile_Ki_no_Val_app_exp | 30 | 55.62 | 33.15 | 59.995 |
Vtd_TD_Val_Ka1_app_exp | 73 | 154.02 | 74.18 | 196.46 |
Vtd_TD_Val_Ka2_app_exp | 615 | 812.01 | 686.34 | 3014.68 |
Vtd_TD_nH_app_exp | 3 | 5.27 | 6.30 | 15.28 |
VileTRNA_Ile_tRNAS_Ile_Km | 20 | 29.55 | 32.25 | 31.86 |
Parameters | Experimental [19] | PSOHS | Downhill Simplex Method | SA |
---|---|---|---|---|
Vdhdps1_DHDPS1_k_app_exp | 1 | 1.19 | 1.26 | 1.24 |
Vdhdps1_DHDPS1_Lys_Ki_app_exp | 10 | 10.76 | 11.47 | 12.67 |
Vdhdps1_DHDPS1_nH_exp | 2 | 2.02 | 2.71 | 2.82 |
Vdhdps2_DHDPS2_k_app_exp | 1 | 1.001 | 0.95 | 0.9 |
Vdhdps2_DHDPS2_Lys_Ki_app_exp | 33 | 32.23 | 34.96 | 35.48 |
Vdhdps2_DHDPS2_nH_exp | 2 | 2.004 | 3.68 | 2.38 |
VlysTRNA_Lys_tRNAS_Lys_Km | 25 | 26.47 | 31.39 | 27.19 |
VlysKR_LKR_kcat_exp | 3.1 | 3.06 | 3.04 | 3.71 |
VlysKR_LKR_Lys_Km_exp | 13,000 | 13,000.11 | 9681.89 | 14,258.63 |
Parameters | Experimental [19] | PSOHS | Downhill Simplex Method | SA |
---|---|---|---|---|
Vts1_TS1_kcatmin_exp | 0.42 | 0.401 | 0.78 | 0.86 |
Vts1_TS1_AdoMet_kcatmax_exp | 3.5 | 3.82 | 5.91 | 6.29 |
Vts1_TS1_nH_exp | 2 | 2.00 | 1.98 | 1.93 |
Vts1_TS1_AdoMet_Ka1_exp | 73 | 71.23 | 85.86 | 181.73 |
Vts1_TS1_AdoMEt_Km_no_AdoMet_exp | 250 | 250.04 | 236.43 | 551.08 |
Vts1_TS1_AdoMet_Ka2_exp | 0.5 | 0.50 | 0.55 | 1.23 |
Vts1_TS1_AdoMet_Ka3_exp | 1.09 | 1.095 | 1.72 | 2.22 |
Vts1_TS1_AdoMet_Ka4_exp | 140 | 150.42 | 172.29 | 336.05 |
Vts1_TS1_Phosphate_Ki_exp | 1000 | 1001.46 | 1066.50 | 2823.02 |
Vtd_TD_k_app_exp | 0.0124 | 0.0124 | 0.0126 | 0.0166 |
Vtd_TD_Ile_Ki_no_Val_app_exp | 30 | 31.12 | 89.33 | 21.72 |
Vtd_TD_Val_Ka1_app_exp | 73 | 73.55 | 99.32 | 59.69 |
Vtd_TD_Val_Ka2_app_exp | 615 | 617.62 | 1202.39 | 2949.7 |
Vtd_TD_nH_app_exp | 3 | 3.11 | 7.41 | 6.93 |
Vtha_THA_kcat_exp | 1.7 | 1.71 | 4.74 | 4.37 |
Vtha_THA_Thr_Km_exp | 7100 | 7100.63 | 12,238.29 | 18,663.59 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosle, M.S.; Mohamad, M.S.; Choon, Y.W.; Ibrahim, Z.; González-Briones, A.; Chamoso, P.; Corchado, J.M. A Hybrid of Particle Swarm Optimization and Harmony Search to Estimate Kinetic Parameters in Arabidopsis thaliana. Processes 2020, 8, 921. https://doi.org/10.3390/pr8080921
Rosle MS, Mohamad MS, Choon YW, Ibrahim Z, González-Briones A, Chamoso P, Corchado JM. A Hybrid of Particle Swarm Optimization and Harmony Search to Estimate Kinetic Parameters in Arabidopsis thaliana. Processes. 2020; 8(8):921. https://doi.org/10.3390/pr8080921
Chicago/Turabian StyleRosle, Mohamad Saufie, Mohd Saberi Mohamad, Yee Wen Choon, Zuwairie Ibrahim, Alfonso González-Briones, Pablo Chamoso, and Juan Manuel Corchado. 2020. "A Hybrid of Particle Swarm Optimization and Harmony Search to Estimate Kinetic Parameters in Arabidopsis thaliana" Processes 8, no. 8: 921. https://doi.org/10.3390/pr8080921
APA StyleRosle, M. S., Mohamad, M. S., Choon, Y. W., Ibrahim, Z., González-Briones, A., Chamoso, P., & Corchado, J. M. (2020). A Hybrid of Particle Swarm Optimization and Harmony Search to Estimate Kinetic Parameters in Arabidopsis thaliana. Processes, 8(8), 921. https://doi.org/10.3390/pr8080921