#
Discrete Output Regulator Design for the Linearized **Saint–Venant–Exner** Model

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Problem Formulation

**Assumption**

**1.**

**Remark**

**1.**

- The closed-loop system is exponentially stable;
- For the closed-loop system, the tracking error $e(t\to \infty )=0,\forall x\left(0\right)\in X,z\left(0\right)\in {\Re}^{e}$;

#### 2.1. System Properties

#### 2.1.1. Linearized System Stability

**Lemma**

**1.**

**Proof.**

#### 2.1.2. Resolvent and Transfer Function

**Lemma**

**2.**

**Proof.**

## 3. Continuous Time Regulator Design

#### 3.1. System Stabilization

**Remark**

**2.**

**Lemma**

**3.**

**Proof.**

**Lemma**

**4.**

**Proof.**

#### 3.2. Output Regulation

**Lemma**

**5.**

**Proof.**

**Remark**

**3.**

**Remark**

**4.**

**Lemma**

**6.**

**Proof.**

**Remark**

**5.**

#### 3.3. System Observer Design

**Lemma**

**7.**

**Proof.**

#### 3.4. Exosystem Observer

#### Exosystem Finite-Time Observer

## 4. Discrete Time Regulator Design

- The closed-loop system is stable;
- For the closed-loop system, the tracking error ${e}_{k}(k\to \infty )=0,\forall {x}_{k=0}\in X,{z}_{k=0}\in \mathbb{R}$;

#### 4.1. Discrete Representation

**Assumption**

**2.**

**Lemma**

**8.**

**Proof.**

#### 4.2. Discrete System Stabilization

**Lemma**

**9.**

**Proof.**

#### 4.3. Discrete Output Regulation

#### 4.3.1. Discrete Regulator Equations

**Lemma**

**10.**

**Proof.**

#### 4.4. Discrete System Observer Design

**Lemma**

**11.**

**Proof.**

#### 4.5. Discrete Exosystem Observer Design

**Lemma**

**12.**

**Proof.**

#### 4.6. Finite-Time Discrete Exosystem Observer Design

## 5. Results

#### 5.1. Continuous Time Regulation

#### 5.2. Discrete Time Regulation

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A. System Stabilization: Backstepping

## Appendix B. Observer Design: Backstepping

## Appendix C. Discrete System Observer Stability

## Appendix D. Discrete Exosystem Observer Stability

**Lemma**

**A1.**

**Proof.**

## References

- Curtain, R.F.; Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Bensoussan, A.; Prato, G.; Delfour, M.; Mitter, S. Representation and Control of Infinite Dimensional Systems; Birkhauser: Boston, MA, USA, 2007. [Google Scholar]
- Alizadeh Moghadam, A.; Aksikas, I.; Dubljevic, S.; Forbes, J.F. Boundary optimal (LQ) control of coupled hyperbolic PDEs and ODEs. Automatica
**2013**, 49, 526–533. [Google Scholar] [CrossRef] - Byrnes, C.I.; Lauko, I.G.; Gilliam, D.S.; Shubov, V.I. Output regulation for linear distributed parameter systems. IEEE Trans. Autom. Control
**2000**, 2, 170–194. [Google Scholar] - Natarajan, V.; Gilliam, D.S.; Weiss, G. The State Feedback Regulator Problem for Regular Linear Systems. IEEE Trans. Autom. Control
**2014**, 59, 2708–2723. [Google Scholar] [CrossRef] - Xu, X.; Dubljevic, S. Finite-dimensional output feedback regulator for a mono-tubular heat exchanger process. IFAC-PapersOnLine
**2016**, 49, 54–59. [Google Scholar] [CrossRef] [Green Version] - Hämäläinen, T.; Pohjolainen, S. Robust Regulation of Distributed Parameter Systems with Infinite-Dimensional Exosystems. SIAM J. Control Optim.
**2010**, 48, 4846–4873. [Google Scholar] [CrossRef] - Paunonen, L.; Pohjolainen, S. Internal Model Theory for Distributed Parameter Systems. SIAM J. Control Optim.
**2010**, 48, 4753–4775. [Google Scholar] [CrossRef] - Paunonen, L.; Pohjolainen, S. Robust controller design for infinite-dimensional exosystems. Int. J. Robust Nonlinear Control
**2014**, 24, 825–858. [Google Scholar] [CrossRef] - Xu, C.Z.; Sallet, G. Proportional and Integral Regulation of Irrigation canal Systems governed by the St Venant Equation. IFAC Proc. Vol.
**1999**, 32, 2274–2279. [Google Scholar] [CrossRef] - Litrico, X.; Fromion, V. H/sub /spl infin// control of an irrigation canal pool with a mixed control politics. IEEE Trans. Control Syst. Technol.
**2006**, 14, 99–111. [Google Scholar] [CrossRef] [Green Version] - Prieur, C.; de Halleux, J. Stabilization of a 1-D tank containing a fluid modeled by the shallow water equations. Syst. Control Lett.
**2004**, 52, 167–178. [Google Scholar] [CrossRef] - Diagne, A.; Diagne, M.; Tang, S.; Krstic, M. Backstepping stabilization of the linearized Saint–Venant–Exner model. Automatica
**2017**, 76, 345–354. [Google Scholar] [CrossRef] [Green Version] - Aamo, O. Disturbance Rejection in 2x2 Linear Hyperbolic Systems. IEEE Trans. Autom. Control
**2013**, 58, 1095–1106. [Google Scholar] [CrossRef] - Deutscher, J. Output regulation for linear distributed-parameter systems using finite-dimensional dual observers. Automatica
**2011**, 47, 2468–2473. [Google Scholar] [CrossRef] - Mlayeh, R.; Toumi, S.; Beji, L. Backstepping boundary observer based-control for hyperbolic PDE in rotary drilling system. Appl. Math. Comput.
**2018**, 322, 66–78. [Google Scholar] [CrossRef] [Green Version] - Deutschmann, A.; Jadachowski, L.; Kugi, A. Backstepping-based boundary observer for a class of time-varying linear hyperbolic PIDEs. Automatica
**2016**, 68, 369–377. [Google Scholar] [CrossRef] - Deutscher, J.; Gehring, N.; Kern, R. Output feedback control of general linear heterodirectional hyperbolic ODE–PDE–ODE systems. Automatica
**2018**, 95, 472–480. [Google Scholar] [CrossRef] - Karafyllis, I.; Krstic, M. Sampled-data boundary feedback control of 1-D linear transport PDEs with non-local terms. Syst. Control Lett.
**2017**, 107, 68–75. [Google Scholar] [CrossRef] - Karafyllis, I.; Krstic, M. Sampled-data boundary feedback control of 1-D parabolic PDEs. Automatica
**2018**, 87, 226–237. [Google Scholar] [CrossRef] [Green Version] - Kazantzis, N.; Kravaris, C. Energy-predictive control: A new synthesis approach for nonlinear process control. Chem. Engn. Sci.
**1999**, 54, 1697–1709. [Google Scholar] [CrossRef] - Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations; Springer Series in Computational Mathematics; Springer: Berlin, Germany, 2002; Volume 31. [Google Scholar]
- Havu, V.; Malinen, J. The Cayley transform as a time discretization scheme. Numer. Funct. Anal. Optim.
**2007**, 28, 825–851. [Google Scholar] [CrossRef] [Green Version] - Engel, R.; Kreisselmeier, G. A continuous-time observer which converges in finite time. IEEE Trans. Autom. Control
**2002**, 47, 1202–1204. [Google Scholar] [CrossRef] [Green Version] - Deutscher, J. Finite-time output regulation for linear 2×2 hyperbolic systems using backstepping. Automatica
**2017**, 75, 54–62. [Google Scholar] [CrossRef] - Dubljevic, S.; Humaloja, J.P. Model Predictive Control for Regular Linear Systems. arXiv
**2018**, arXiv:0706.1234. [Google Scholar] - Besseling, N. Stability analysis in continuous and discrete time. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2012. [Google Scholar]
- Xu, Q.; Dubljevic, S. Linear Model Predictive Control for Transport-Reaction Processes. AIChE J.
**2017**, 63, 2644–2659. [Google Scholar] [CrossRef] - Izadi, M.; Abdollahi, J.; Dubljevic, S.S. PDE backstepping control of one-dimensional heat equation with time-varying domain. Automatica
**2015**, 54, 41–48. [Google Scholar] [CrossRef] - Backstepping output-feedback control of moving boundary parabolic PDEs. Eur. J. Control
**2015**, 21, 27–35. [CrossRef]

**Figure 1.**PDE system (Equation (2)) representation.

**Figure 2.**System eigenvalue distribution for the parameters given in Table 1.

**Figure 5.**System stabilization with the control law given in Equation (22).

**Figure 6.**System stabilization and output regulation with the control law given in Equation (10).

**Figure 7.**System observer error, using the observer developed in Section 3.3.

**Figure 8.**System closed-loop response, using the observer developed in Section 3.3 and the control law given in Equation (10).

**Figure 9.**System closed-loop response (on the left), using the system and exosystem observers and the control law given in Equation (10). On the right, the exosystem states and its observer states.

**Figure 10.**System closed-loop response (on the left), using the system observer, finite-time exosystem observer and the control law given in Equation (10). On the right, the exosystem states and its observer states.

**Figure 11.**Discrete system stabilization with the control law given in Equation (53), considering ${z}_{k}=0$.

**Figure 12.**Discrete system stabilization and output regulation with the control law given in Equation (53), assuming that ${z}_{k}$ are known states.

**Figure 13.**Discrete system closed-loop response, using the observer developed in Section 4.4 and the control law given in Equation (53).

**Figure 14.**Discrete system closed-loop response (on the left), using the system and exosystem observers and the control law given in Equation (53). On the right, the discrete exosystem states and its observer states.

**Figure 15.**Discrete system closed-loop response (on the left), using the observability matrix to reconstruct the exosystem states. On the right, the discrete exosystem states and the observer states.

Parameter | Value | Parameter | Value |
---|---|---|---|

${q}_{1}={q}_{2}$ | 1 | ${\rho}_{1}={\rho}_{2}$ | $0.5$ |

${\sigma}_{11}={\sigma}_{21}={\beta}_{1}$ | $0.2$ | ${\sigma}_{12}={\sigma}_{22}={\beta}_{2}$ | $0.05$ |

${\alpha}_{1}$ | $0.1$ | $\mu $ | 2 |

${\gamma}_{1}$ | $0.5$ | ${\gamma}_{2}$ | 1 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cassol, G.O.; Dubljevic, S.
Discrete Output Regulator Design for the Linearized * Saint–Venant–Exner* Model.

*Processes*

**2020**,

*8*, 915. https://doi.org/10.3390/pr8080915

**AMA Style**

Cassol GO, Dubljevic S.
Discrete Output Regulator Design for the Linearized * Saint–Venant–Exner* Model.

*Processes*. 2020; 8(8):915. https://doi.org/10.3390/pr8080915

**Chicago/Turabian Style**

Cassol, Guilherme Ozorio, and Stevan Dubljevic.
2020. "Discrete Output Regulator Design for the Linearized * Saint–Venant–Exner* Model"

*Processes*8, no. 8: 915. https://doi.org/10.3390/pr8080915