Effect of Titanium Dioxide Nanocomposite Material and Antimicrobial Agents on Mushrooms Shelf-Life Preservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microbiological Analysis
2.3. Color Analysis
2.4. Weight Loss Ratio and Texture Measurements
2.5. Headspace Gas Analysis and pH
2.6. Enzyme Activity Analysis and Total Soluble Solids
2.7. Membrane Permeability Analysis and Open Cap Percents
2.8. Statistical Analyses
3. Results and Discussion
3.1. Microbiological Analysis
3.2. Color Attribute Changes
3.3. Weight Loss Ratio and Texture Measurements
3.4. Headspace Gas Analysis and pH
3.5. PPO Activity and TSS Concentration
3.6. Membrane Permeability and Open Cap Percents
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Azevedo, S.; Cunha, L.M.; Oliveira, J.C.; Mahajan, P.V.; Fonseca, S.C. Modelling the influence of time, temperature and relative humidity conditions on the mass loss rate of fresh oyster mushrooms. J. Food Eng. 2017, 212, 108–112. [Google Scholar] [CrossRef]
- Gholami, R.; Ahmadi, E.; Farris, S. Shelf life extension of white mushroom (Agaricus bisporus) by low temperatures conditioning, modified atmosphere, and nanocomposite packaging material. Food Packag. Shelf Life 2017, 14, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Gaikwad, K.K.; Lee, M.; Lee, Y.S. Thermally buffered corrugated packaging for preserving the postharvest freshness of mushrooms (Agaricus bisporus). J. Food Eng. 2018, 216, 11–19. [Google Scholar] [CrossRef]
- Wang, H.J.; An, D.S.; Rhim, J.W.; Lee, D.S. Shiitake mushroom packages turned in active CO2 and moisture absorption requirements. Food Packag. Shelf Life 2017, 11, 10–15. [Google Scholar] [CrossRef]
- Eissa, H. Effect of chitosan coating on shelf-life and quality of fresh-cut mushroom. Polish J. Food Nutr. Sci. 2008, 58, 95–105. [Google Scholar] [CrossRef]
- Wei, W.; Lv, P.; Xia, Q.; Tan, F.; Sun, F.; Yu, W.; Jia, L.; Cheng, J. Fresh-keeping effects of three types of modified atmosphere packaging of pine-mushrooms. Postharvest Biol. Technol. 2017, 132, 62–70. [Google Scholar] [CrossRef]
- Sakinah, M.J.; Misran, A.; Mahmud, T.M.M.; Abdullah, S.; Azhar, M. Evaluation of storage temperature, packaging system and storage duration on postharvest quality of straw mushroom (Volvariella Volvacea). Food Res. 2020, 4, 679–689. [Google Scholar]
- Srivastava, P.; Prakash, P.; Bunkar, D. Enhancement in physiological and sensory attributes of button mushroom (Agaricus bisporus) as influenced by chemical and modified atmospheric packaging (MAP) treatments at low temperature storage. Int. J. Chem. Stud. 2020, 8, 2059–2064. [Google Scholar] [CrossRef]
- Licciardello, F.; Kharchoufi, S.; Muratore, G.; Restuccia, C. Effect of edible coating combined with pomegranate peel extract on the quality maintenance of white shrimps (Parapenaeus longirostris) during refrigerated storage. Food Packag. Shelf Life 2018, 17, 114–119. [Google Scholar] [CrossRef]
- Chawengkijwanich, C.; Hayata, H. Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int. J. Food Microbiol. 2008, 123, 288–292. [Google Scholar] [CrossRef]
- Maneerat, C.; Hayata, Y. Antifungal activity of TiO2 photocatalysisagainst Penicilliumexpansum in vitro and in fruit tests. Int. J. Food Microbiol. 2006, 107, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Qiao, G.; Xiao, Z.; Ding, W.; Ahmed, R. Effect of Chitosan/Nano-Titanium Dioxide/Thymol and Tween films on ready-to-eat cantaloupe fruit quality. Coating 2019, 9, 828. [Google Scholar] [CrossRef] [Green Version]
- Belay, Z.A.; Caleb, O.J.; Opara, U.L. Modelling approaches for designing and evaluating the performance of modified atmosphere packaging (MAP) systems for fresh produce: A review. Food Packag. Shelf Life 2016, 10, 1–15. [Google Scholar] [CrossRef]
- Rok, E. Application of Nano-Coating and Chitosan Combination Films on Cantaloupe Preservation. Pak. J. Biol. Sci. 2020, 23, 1–7. [Google Scholar]
- Tarlak, F.; Ozdemir, M.; Melikoglu, M. The combined effect of exposure time to sodium chlorite (NaClO2) solution and packaging on postharvest quality of white button mushroom (Agaricus bisporus) stored at 4 °C. Food Sci. Technol. 2020, 40, 864–870. [Google Scholar] [CrossRef] [Green Version]
- Zhaojun, B.; Li, L.; Junfeng, G.; Jianhua, F.; Maoyu, W.; Xinming, X.; Jiang, L. Modified atmosphere packaging (MAP) and coating for improving preservation of whole and sliced Agaricus Bisporus. J. Food Sci. Technol. 2014, 51, 3894–3901. [Google Scholar]
- Amin, M.; Babak, M.; John, B. Aloe vera gel treatment delays postharvest browning of white button mushroom (Agaricus bisporus). J. Food Meas. Charact. 2019, 13, 1250–1256. [Google Scholar]
- Pešaković, M.; Karaklajić-Stajić, Ž.; Milenković, S.; Mitrović, O. Biofertilizer affecting yield related characteristics of strawberry (Fragaria ananassa Duch.) and soil micro-organisms. Sci. Hortic. 2013, 150, 238–243. [Google Scholar]
- Peng, Y.; Li, T.; Jiang, H.; Gu, Y.; Chen, Q.; Yang, C.; Qi, W.L.; Liu, S.; Zhang, X. Postharvest biochemical characteristics and ultrastructure of Coprinus comatus. PeerJ 2020, 8, e8508. [Google Scholar] [CrossRef] [Green Version]
- Oz, A.T.; Ulukanli, Z.; Bozok, F.; Baktemur, G. The postharvest quality, sensory and shelf life of a Garicus Bisporus in active map. J. Food Process. Preserv. 2015, 39, 100–106. [Google Scholar] [CrossRef]
- Karimirad, R.; Behnamian, M.; Dezhsetan, S. Application of chitosan nanoparticles containing Cuminum cyminum oil as a delivery system for shelf life extension of Agaricus bisporus. LWT 2019, 106, 218–228. [Google Scholar] [CrossRef]
- Fernandes, N.; Antonio, A.L.; Barreira, J.O.C.; Oliveira, M.B.P.; Martins, A.; Ferreira, I.C. Effects of gamma irradiation on physical parameters of Lactarius deliciosus wild edible mushrooms. Postharvest Biol. Technol. 2012, 74, 79–84. [Google Scholar] [CrossRef]
- Lin, Q.; Lu, Y.; Zhang, J.; Liu, W.; Guan, W.; Wang, Z. Effects of high CO2 in-package treatment on flavor, quality and antioxidant activity of button mushroom (Agaricus bisporus) during postharvest storage. Postharvest Biol. Technol. 2017, 123, 112–118. [Google Scholar] [CrossRef]
- Walkowiak-Tomczak, D.; Idaszewska, N.; Bieńczak, K.; Kómoch, W. The effect of mechanical actions occurring during transport on physicochemical changes in Agaricus bisporus mushrooms. Sustainability 2020, 12, 4993. [Google Scholar] [CrossRef]
- Rok, E.; Ebtihal, K.; Abeer, E.; Nada, B.; Mahmoud, H. Chitosan, Nisin, Silicon Dioxide nanoparticles coating films effects on blueberry (Vaccinium myrtillus) quality. Coatings 2020, 10, 1–12. [Google Scholar]
- Nasiri, M.; Barzegar, M.; Sahari, M.A.; Niakousari, M. Application of Tragacanth gum impregnated with Satureja khuzistanica essential oil as a natural coating for enhancement of postharvest quality and shelf life of button mushroom (Agaricus Bisporus). Int. J. Biol. Macromol. 2018, 106, 218–226. [Google Scholar] [CrossRef]
- Wang, Q.; Chu, L.; Kou, L. UV-C treatment maintains qualityand delays senescence of oyster mushroom (Pleurotus Ostreatus). Sci. Hortic. 2017, 225, 380–385. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, D.; Wu, Y.; Yuan, M.; Li, L.; Yang, J. Effect of PLA/PCL/cinnamaldehyde antimicrobial packaging on physicochemical and microbial quality of button mushroom (Agaricus Bisporus). Postharvest Biol. Technol. 2015, 99, 73–79. [Google Scholar] [CrossRef]
- Mannozzi, C.; Tylewicz, U.; Chinnici, F.; Siroli, L.; Rocculi, P.; Dalla, M.; Romani, S. Effects of chitosan based coatings enriched with procyanidin by-product on quality of fresh blueberries during storage. Food Chem. 2018, 251, 18–24. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Approximate pH of Foods and Food Products. Available online: http://www.cfsan.fda.gov/-comm/lacf-phs.html (accessed on 17 June 2020).
- Hu, Y.H.; Chen, C.M.; Xu, L.; Cui, Y.; Yu, X.Y.; Gao, H.J.; Wang, Q.; Liu, K.; Shi, Y.; Chen, Q.X. Postharvest application of 4-methoxy cinnamic acid for extending the shelf life of mushroom (Agaricus Bisporus). Postharvest Biol. Technol. 2015, 104, 33–41. [Google Scholar] [CrossRef]
- Aday, M.S. Application of electrolyzed water for improving postharvest quality of mushroom. LWT Food Sci. Technol. 2016, 68, 44–51. [Google Scholar] [CrossRef]
- Ding, Y.; Zhu, Z.; Zhao, J.; Nie, Y.; Zhang, Y.; Sheng, J.; Meng, D.; Mao, H.; Tang, X. Effects of postharvest brassinolide treatment on the metabolism of white button mushroom (Agaricus bisporus) in relation to development of browning during storage. Food Bioprocess Technol. 2016, 9, 1327–1334. [Google Scholar] [CrossRef]
- Dokhanieh, A.Y.; Aghdam, M.S. Postharvest browning alleviation of Agaricus bisporus using salicylic acid treatment. Sci. Hortic. 2016, 207, 146–151. [Google Scholar] [CrossRef]
- Alikhani-Koupaei, M.; Mazlumzadeh, M.; Sharifani, M.; Adibian, M. Enhancing stability of essential oils by microencapsulation for preservation of button mushroom during postharvest. Food Sci. Nutr. 2014, 2, 526–533. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Zhang, X.; Kan, J.; Jin, C. Effect of gallic acid grafted chitosan film packaging on the postharvest quality of white button mushroom (Agaricus Bisporus). Postharvest Biol. Technol. 2019, 147, 39–47. [Google Scholar] [CrossRef]
Days | Control | CHS | CHSTiO2 | CHSTiO2/TT80 |
---|---|---|---|---|
Yeast and Mold counts | ||||
0 | 1.23 ± 0.60 c | 1.13 ± 0.49 c | 1.10 ± 0.56 c | 0.73 ± 0.21 c |
3 | 2.50 ± 0.44 bc | 2.57 ± 0.67 bc | 2.70 ± 0.46 b | 1.47 ± 0.55 bc |
6 | 2.90 ± 0.75 b | 2.87 ± 0.19 b | 2.80 ± 0.14 b | 1.80 ± 0.26 bc |
9 | 4.03 ± 0.15 b | 4.17 ± 0.06 b | 3.90 ± 0.10 b | 2.87 ± 0.15 b |
12 | 6.30 ± 0.13 a | 6.17 ± 0.55 a | 6.13 ± 0.16 a | 4.27 ± 0.12 a |
Total aerobic plate counts | ||||
0 | 3.50 ± 0.30 d | 3.37 ± 0.71 c | 3.40 ± 0.95 c | 3.20 ± 0.61 b |
3 | 4.47 ± 0.81 cd | 4.27 ± 0.14 bc | 4.20 ± 0.66 bc | 3.93 ± 0.91 b |
6 | 5.17 ± 0.51 bc | 5.07 ± 0.91 ab | 5.03 ± 0.51 b | 4.70 ± 0.72 ab |
9 | 5.73 ± 0.80 ab | 5.53 ± 0.64 ab | 5.33 ± 0.40 ab | 5.03 ± 0.75 ab |
12 | 6.80 ± 0.26 a | 6.43 ± 0.72 a | 6.43 ± 0.61 a | 5.93 ± 0.12 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sami, R.; Elhakem, A.; Alharbi, M.; Benajiba, N.; Almatrafi, M.; Jing, J.; Helal, M. Effect of Titanium Dioxide Nanocomposite Material and Antimicrobial Agents on Mushrooms Shelf-Life Preservation. Processes 2020, 8, 1632. https://doi.org/10.3390/pr8121632
Sami R, Elhakem A, Alharbi M, Benajiba N, Almatrafi M, Jing J, Helal M. Effect of Titanium Dioxide Nanocomposite Material and Antimicrobial Agents on Mushrooms Shelf-Life Preservation. Processes. 2020; 8(12):1632. https://doi.org/10.3390/pr8121632
Chicago/Turabian StyleSami, Rokayya, Abeer Elhakem, Mona Alharbi, Nada Benajiba, Manal Almatrafi, Jing Jing, and Mahmoud Helal. 2020. "Effect of Titanium Dioxide Nanocomposite Material and Antimicrobial Agents on Mushrooms Shelf-Life Preservation" Processes 8, no. 12: 1632. https://doi.org/10.3390/pr8121632
APA StyleSami, R., Elhakem, A., Alharbi, M., Benajiba, N., Almatrafi, M., Jing, J., & Helal, M. (2020). Effect of Titanium Dioxide Nanocomposite Material and Antimicrobial Agents on Mushrooms Shelf-Life Preservation. Processes, 8(12), 1632. https://doi.org/10.3390/pr8121632