Next Article in Journal
A Novel Approach Using Conventional Methodologies to Scale up BNC Production Using Komagataeibacter medellinensis and Rotten Banana Waste as Alternative
Previous Article in Journal
A Methodology to Estimate the Sorption Parameters from Batch and Column Tests: The Case Study of Methylene Blue Sorption onto Banana Peels
Article

Scutellaria baicalensis Flavones as Potent Drugs against Acute Respiratory Injury during SARS-CoV-2 Infection: Structural Biology Approaches

1
Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenţei, 050095 Bucharest, Romania
2
Laser Department, National Institute for Laser, Plasma and Radiation Physics, Atomistilor Street, No. 409, P.O. Box MG-36, RO-077125 Magurele City, Romania
3
Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, 313 Splaiul Independenţei, 060042 Bucharest, Romania
*
Authors to whom correspondence should be addressed.
Processes 2020, 8(11), 1468; https://doi.org/10.3390/pr8111468
Received: 13 October 2020 / Revised: 12 November 2020 / Accepted: 13 November 2020 / Published: 16 November 2020
(This article belongs to the Special Issue Advances of Protein Bioinformatics)
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in severe damage to the respiratory system. With no specific treatment to date, it is crucial to identify potent inhibitors of SARS-CoV-2 Chymotrypsin-like protease (3CLpro) that could also modulate the enzymes involved in the respiratory damage that accompanies SARS-CoV-2 infection. Here, flavones isolated from Scutellaria baicalensis (baicalein, baicalin, wogonin, norwogonin, and oroxylin A) were studied as possible compounds in the treatment of SARS-CoV-2 and SARS-CoV-2-induced acute lung injuries. We used structural bioinformatics and cheminformatics to (i) identify the critical molecular features of flavones for their binding activity at human and SARS-CoV-2 enzymes; (ii) predict their drug-likeness and lead-likeness features; (iii) calculate their pharmacokinetic profile, with an emphasis on toxicology; (iv) predict their pharmacodynamic profiles, with the identification of their human body targets involved in the respiratory system injuries; and (v) dock the ligands to SARS-CoV-2 3CLpro. All flavones presented appropriate drug-like and kinetics features, except for baicalin. Flavones could bind to SARS-CoV-2 3CLpro at a similar site, but interact slightly differently with the protease. Flavones’ pharmacodynamic profiles predict that (i) wogonin strongly binds at the cyclooxygenase2 and nitric oxide synthase; (ii) baicalein and norwogonin could modulate lysine-specific demethylase 4D-like and arachidonate 15-lipoxygenase; and (iii) baicalein, wogonin, norwogonin, and oroxylin A bind to SARS-CoV-2 3CLpro. Our results propose these flavones as possible potent drugs against respiratory damage that occurs during SARS-CoV-2 infections, with a strong recommendation for baicalein. View Full-Text
Keywords: infections; antiviral; flavonoids; pharmacokinetics; pharmacodynamic; SARS-CoV-2; Scutellaria baicalensis; bioinformatics infections; antiviral; flavonoids; pharmacokinetics; pharmacodynamic; SARS-CoV-2; Scutellaria baicalensis; bioinformatics
Show Figures

Figure 1

MDPI and ACS Style

Udrea, A.-M.; Mernea, M.; Buiu, C.; Avram, S. Scutellaria baicalensis Flavones as Potent Drugs against Acute Respiratory Injury during SARS-CoV-2 Infection: Structural Biology Approaches. Processes 2020, 8, 1468. https://doi.org/10.3390/pr8111468

AMA Style

Udrea A-M, Mernea M, Buiu C, Avram S. Scutellaria baicalensis Flavones as Potent Drugs against Acute Respiratory Injury during SARS-CoV-2 Infection: Structural Biology Approaches. Processes. 2020; 8(11):1468. https://doi.org/10.3390/pr8111468

Chicago/Turabian Style

Udrea, Ana-Maria, Maria Mernea, Cătălin Buiu, and Speranța Avram. 2020. "Scutellaria baicalensis Flavones as Potent Drugs against Acute Respiratory Injury during SARS-CoV-2 Infection: Structural Biology Approaches" Processes 8, no. 11: 1468. https://doi.org/10.3390/pr8111468

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop