A New Computational Approach to Evaluating Systemic Gene–Gene Interactions in a Pathway Affected by Drug LY294002
Abstract
1. Introduction
2. Materials
3. Methods
4. Results
5. CELL CYCLE Pathway
6. MTOR Pathway
7. ERBB Signaling Pathway
8. Discussion
Funding
Conflicts of Interest
References
- Wang, W.; Yang, S.; Zhang, X.; Li, J. Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 2014, 30, 2923–2930. [Google Scholar] [CrossRef] [PubMed]
- Kim, S. Pathway Interactions Based on Drug-Induced Datasets. Cancer Inform. 2019, 18. [Google Scholar] [CrossRef] [PubMed]
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Pammolli, F.; Magazzini, L.; Riccaboni, M. The productivity crisis in pharmaceutical R&D. Nat. Rev. Drug Discov. 2011, 10, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Yeu, Y.; Yoon, Y.; Park, S. Protein localization vector propagation: A method for improving the accuracy of drug repositioning. Mol. BioSyst. 2015, 11, 2096–2102. [Google Scholar] [CrossRef]
- Imming, P.; Sinning, C.; Meyer, A. Drugs, their targets and the nature and number of drug targets. Nat. Rev. Drug Discov. 2006, 5, 821–834. [Google Scholar] [CrossRef]
- Kim, I.-W.; Jang, H.; Kim, J.H.; Kim, M.G.; Kim, S.; Oh, J.M. Computational Drug Repositioning for Gastric Cancer using Reversal Gene Expression Profiles. Sci. Rep. 2019, 9, 2660. [Google Scholar] [CrossRef]
- Sirota, M.; Dudley, J.T.; Kim, J.; Chiang, A.P.; Morgan, A.A.; Sweet-Cordero, A.; Sage, J.; Butte, A.J. Discovery and Preclinical Validation of Drug Indications Using Compendia of Public Gene Expression Data. Sci. Transl. Med. 2011, 3, 96ra77. [Google Scholar] [CrossRef]
- Napolitano, F.; Carrella, D.; Mandriani, B.; Vaquero, S.P.; Sirci, F.; Medina, D.L.; Brunetti-Pierri, N.; Di Bernardo, D. gene2drug: A computational tool for pathway-based rational drug repositioning. Bioinformatics 2018, 34, 1498–1505. [Google Scholar] [CrossRef]
- Napolitano, F.; Zhao, Y.; Moreira, V.M.; Tagliaferri, R.; Kere, J.; D’Amato, M.; Greco, D. Drug repositioning: A machine-learning approach through data integration. J. Cheminform. 2013, 5, 30. [Google Scholar] [CrossRef]
- Laenen, G.; Thorrez, L.; Börnigen, D.; Moreau, Y. Finding the targets of a drug by integration of gene expression data with a protein interaction network. Mol. BioSyst. 2013, 9, 1676. [Google Scholar] [CrossRef] [PubMed]
- Işik, Z.; Baldow, C.; Cannistraci, C.V.; Schroeder, M. Drug target prioritization by perturbed gene expression and network information. Sci. Rep. 2015, 5, 17417. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-M.; Hwang, C.Y.; Choi, J.; Joung, C.Y.; Cho, K.-H. Feedback analysis identifies a combination target for overcoming adaptive resistance to targeted cancer therapy. Oncogene 2020, 39, 3803–3820. [Google Scholar] [CrossRef] [PubMed]
- Shahreza, M.L.; Ghadiri, N.; Mousavi, S.R.; Varshosaz, J.; Green, J.R. A review of network-based approaches to drug repositioning. Brief. Bioinform. 2017, 19, 878–892. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Nishimura, D. BioCarta. Biotech Software & Internet Report. Comput. Softw. J. Sci. 2001, 2, 117–120. [Google Scholar]
- Kim, S. Identifying dynamic pathway interactions based on clinical information. Comput. Biol. Chem. 2017, 68, 260–265. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, X.; Zhou, J.; Yang, J.; Zhang, Y.; Kuang, W.; Peng, J.; Chen, L.; Zeng, J. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun. 2017, 8, 573. [Google Scholar] [CrossRef]
- Kuhn, M.; Von Mering, C.; Campillos, M.; Jensen, L.J.; Bork, P. STITCH: Interaction networks of chemicals and proteins. Nucleic Acids Res. 2007, 36, D684–D688. [Google Scholar] [CrossRef]
- Huang, R.; Wallqvist, A.; Thanki, N.; Covell, D.G. Linking pathway gene expressions to the growth inhibition response from the National Cancer Institute’s anticancer screen and drug mechanism of action. Pharm. J. 2005, 5, 381–399. [Google Scholar] [CrossRef][Green Version]
- Rabow, A.A.; Shoemaker, R.H.; Sausville, E.A.; Covell, D.G. Mining the National Cancer Institute’s tumor-screening database: Identification of compounds with similar cellular activities. J. Med. Chem. 2002, 45, 818–840. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kreider, K. Parameter identification for nonlinear elastic and viscoelastic plates. Appl. Numer. Math. 2006, 56, 1538–1554. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; Cho, K.-H. Inferring gene regulatory networks from temporal expression profiles under time-delay and noise. Comput. Biol. Chem. 2007, 31, 239–245. [Google Scholar] [CrossRef]
- Capri, S.; Russo, A.G. Cost of breast cancer based on real-world data: A cancer registry study in Italy. BMC Health Serv. Res. 2017, 17, 84. [Google Scholar] [CrossRef] [PubMed]
- Sanad, M.F.; Shalan, A.E.; Bazid, S.M.; Abu Serea, E.S.; Hashem, E.M.; Nabih, S.; Ahsan, A. A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment. RSC Adv. 2019, 9, 31021–31029. [Google Scholar] [CrossRef]
- Comşa, Ş.; Cimpean, A.M.; Raica, M. The Story of MCF-7 Breast Cancer Cell Line: 40 years of Experience in Research. Anticancer Res. 2015, 35, 3147–3154. [Google Scholar]
- Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.-P.; Subramanian, A.; Ross, K.N.; et al. The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease. Science 2006, 313, 1929–1935. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Press, W.H. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Kim, S.; Choi, M.; Cho, K.H. Identifying the target mRNAs of microRNAs in colorectal cancer. Comput. Biol. Chem. 2009, 33, 94–99. [Google Scholar] [CrossRef]
- Zhong, X.; Chen, X.; Guan, X.; Zhang, H.; Ma, Y.; Zhang, S.; Wang, E.; Zhang, L.; Han, Y. Overexpression of G9a and MCM7 in oesophageal squamous cell carcinoma is associated with poor prognosis. Histopathology 2014, 66, 192–200. [Google Scholar] [CrossRef]
- Hamadneh, L.; Al-Majawleh, M.; Jarrar, Y.B.; Shraim, S.; Hasan, M.; Abu-Irmaileh, B. Culturing conditions highly affect DNA methylation and gene expression levels in MCF7 breast cancer cell line. Vitr. Cell. Dev. Biol.-Anim. 2018, 54, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Driver, K.E.; Song, H.; Lesueur, F.; Ahmed, S.; Barbosa-Morais, N.; Tyrer, J.P.; Ponder, B.A.; Easton, D.F.; Pharoah, P.D.; Dunning, A.M.; et al. Association of single-nucleotide polymorphisms in the cell cycle genes with breast cancer in the British population. Carcinogenesis 2008, 29, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Lanceta, L.; O’Neill, C.; Lypova, N.; Li, X.; Rouchka, E.; Waigel, S.; Gomez-Gutierrez, J.G.; Chesney, J.; Imbert-Fernandez, Y. Transcriptomic Profiling Identifies Differentially Expressed Genes in Palbociclib-Resistant ER+ MCF7 Breast Cancer Cells. Genes 2020, 11, 467. [Google Scholar] [CrossRef] [PubMed]
- Rossi, L.; McCartney, A.; Risi, E.; De Santo, I.; Migliaccio, I.; Malorni, L.; Biganzoli, L.; Di Leo, A. Cyclin-Dependent Kinase 4/6 Inhibitors in Neoadjuvant Endocrine Therapy of Hormone Receptor-Positive Breast Cancer. Clin. Breast Cancer 2019, 19, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Ma, J.; Chu, J.; Shao, Q.; Zhang, Y.; Lu, G.; Li, J.; Huang, X.; Li, W.; Li, Y.; et al. MiR-129-5p Sensitizes the Response of Her-2 Positive Breast Cancer to Trastuzumab by Reducing Rps6. Cell. Physiol. Biochem. 2017, 44, 2346–2356. [Google Scholar] [CrossRef]
- Ge, S.; Wang, D.; Kong, Q.; Gao, W.; Sun, J. Function of miR-152 as a Tumor Suppressor in Human Breast Cancer by Targeting PIK3CA. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2017, 25, 1363–1371. [Google Scholar] [CrossRef]
- Chang, J.; Hong, L.; Liu, Y.; Pan, Y.; Yang, H.; Ye, W.; Xu, K.; Li, Z.; Zhang, S. Targeting PIK3CG in Combination with Paclitaxel as a Potential Therapeutic Regimen in Claudin-Low Breast Cancer. Cancer Manag. Res. 2020, 12, 2641. [Google Scholar] [CrossRef]
- Coniglio, S.J.; Zavarella, S.; Symons, M. Pak1 and Pak2 Mediate Tumor Cell Invasion through Distinct Signaling Mechanisms. Mol. Cell. Boil. 2008, 28, 4162–4172. [Google Scholar] [CrossRef]
- Han, K.; Zhou, Y.; Gan, Z.-H.; Qi, W.-X.; Zhang, J.-J.; Fen, T.; Meng, W.; Jiang, L.; Shen, Z.; Min, D.-L. p21-activated kinase 7 is an oncogene in human osteosarcoma. Cell Biol. Int. 2014, 38, 1394–1402. [Google Scholar] [CrossRef]
- Zhang, Y.; Ni, H.J.; Cheng, D.Y. Prognostic value of phosphorylated mTOR/RPS6KB1 in non-small cell lung cancer. Asian Pac. J. Cancer Prev. 2013, 14, 3725–3728. [Google Scholar] [CrossRef]
- Cai, C.; Chen, Q.B.; Han, Z.D.; Zhang, Y.Q.; He, H.C.; Chen, J.H.; Chen, Y.R.; Yang, S.B.; Wu, Y.D.; Zeng, Y.R.; et al. miR-195 Inhibits Tumor Progression by Targeting RPS6KB1 in Human Prostate Cancer. Clin. Cancer Res. 2015, 21, 4922–4934. [Google Scholar] [CrossRef] [PubMed]
- Li, P.D.; Zhang, W.J.; Zhang, M.Y.; Yuan, L.J.; Cha, Y.L.; Ying, X.F.; Wu, G.; Wang, H.Y. Overexpression of RPS6KB1 predicts worse prognosis in primary HCC patients. Med. Oncol. 2012, 29, 3070–3076. [Google Scholar] [CrossRef] [PubMed]
- Frankum, J.; Moudry, P.; Brough, R.; Hodný, Z.; Ashworth, A.; Bartek, J.; Lord, C.J. Complementary genetic screens identify the E3 ubiquitin ligase CBLC, as a modifier of PARP inhibitor sensitivity. Oncotarget 2015, 6, 10746–10758. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhao, Q.; Yu, S.; Lin, R.; Yi, X. Retracted Article: Pttg1 inhibits TGFβ signaling in breast cancer cells to promote their growth. Tumor Biol. 2015, 36, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Li, W.; Liu, J.; Li, J.; He, F.; Jiang, Y.; Yang, L.; Li, P.; Wang, B.; Wang, Y.; et al. Simvastatin suppresses the DNA replication licensing factor MCM7 and inhibits the growth of tamoxifen-resistant breast cancer cells. Sci. Rep. 2017, 7, 41776. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wester, L.; He, J.; Geiger, T.; Moerkens, M.; Siddappa, R.; Helmijr, J.A.; Timmermans, M.M.; Look, M.P.; van Deurzen, C.H.M.; et al. IGF1R signaling drives antiestrogen resistance through PAK2/PIX activation in luminal breast cancer. Oncogene 2018, 37, 1869–1884. [Google Scholar] [CrossRef]
(A) Top five negative interactions | ||||
Quality Strength | Quantity Strength | |||
Strain genes | Stress genes | Weight | Strain gene family | Number of stress genes |
ANAPC1 | CDK6 | −0.41185 | CDC | 12 |
CDKN2D | YWHAB | −0.41173 | CCN | 10 |
CCNA1 | CDKN2A | −0.41173 | CDK | 10 |
CCNH | RB1 | −0.41142 | MCM | 7 |
PTTG1 | MCM7 | −0.41136 | ORC | 6 |
(B)Top five positive interactions | ||||
Quality Strength | Quantity Strength | |||
Strain genes | Stress genes | weight | Strain gene family | Number of stress genes |
ORC2L | CHEK1 | 0.951 | CDC | 12 |
PTTG1 | SFN | 0.950 | CCN | 10 |
CDC16 | PTTG2 | 0.950 | CDK | 8 |
YWHAB | PKMYT1 | 0.949 | MCM | 7 |
BUB3 | PRKDC | 0.949 | ORC | 7 |
(A) | ||||||
Quality Strength | Quantity Strength | |||||
Strain genes | Stress genes | Weight | Strain gene family | Frequency | Stress gene | Frequency |
INS | RPS6 | −3.1254 | PIK3 | 20 | RPS6KB1 | 19 |
PIK3CG | RPS6 | −3.0717 | RPS6K | 12 | RPS6 | 30 |
IGF1 | RPS6 | −2.6695 | VEGF | 10 | EIF4B | 17 |
FIGF | RPS6 | −1.9222 | AKT | 11 | HIF1A | 28 |
PIK3CG | HIF1A | −1.7986 | PRKAA | 7 | ||
(B) | ||||||
Quality Strength | Quantity Strength | |||||
Strain genes | Stress genes | Weight | Strain gene | Frequency | ||
PRKAA2 | PRKAA2 | 1.3193 | PIK3CG | 23 | ||
INS | PRKAA2 | 1.0173 | PRKAA2 | 17 | ||
PRKAA2 | ULK2 | 0.98974 | IGF1 | 17 | ||
IGF1 | IGF1 | 0.94913 | INS | 16 | ||
IGF1 | PIK3R5 | 0.94054 | AKT | 11 |
(A) | ||||
Quality Strength | Quantity Strength | |||
Strain genes | Stress genes | Weight | Strain gene | Number of stress genes |
CBLB | RPS6KB1 | −0.14064 | PAK | 11 |
CAMK2D | RPS6KB1 | −0.14059 | PIK3 | 9 |
CBLC | RPS6KB1 | −0.14053 | CAMK2 | 7 |
PAK2 | RPS6KB1 | −0.14049 | CBL, PRKC | 6 |
PAK7 (PAK5) | RPS6KB1 | −0.13989 | MAPK | 5 |
(B) | ||||
Quality Strength | Quantity Strength | |||
Strain genes | Stress genes | weight | Strain gene family | Number of stress genes |
RPS6KB1 | CBLC | 0.23793 | PIK3 | 10 |
MYC | CBLC | 0.23766 | PAK | 6 |
NRAS | CBLC | 0.23759 | MAPK | 6 |
ERBB3 | CBLC | 0.2371 | MAP2 | 5 |
MAPK9 | CBLC | 0.23705 | RPS6KB | 5 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S. A New Computational Approach to Evaluating Systemic Gene–Gene Interactions in a Pathway Affected by Drug LY294002. Processes 2020, 8, 1230. https://doi.org/10.3390/pr8101230
Kim S. A New Computational Approach to Evaluating Systemic Gene–Gene Interactions in a Pathway Affected by Drug LY294002. Processes. 2020; 8(10):1230. https://doi.org/10.3390/pr8101230
Chicago/Turabian StyleKim, Shinuk. 2020. "A New Computational Approach to Evaluating Systemic Gene–Gene Interactions in a Pathway Affected by Drug LY294002" Processes 8, no. 10: 1230. https://doi.org/10.3390/pr8101230
APA StyleKim, S. (2020). A New Computational Approach to Evaluating Systemic Gene–Gene Interactions in a Pathway Affected by Drug LY294002. Processes, 8(10), 1230. https://doi.org/10.3390/pr8101230