Systems Evaluation through New Grey Relational Analysis Approach: An Application on Thermal Conductivity—Petrophysical Parameters’ Relationships
Abstract
:1. Introduction
2. Literature Review
2.1. Grey Relational Analysis
2.2. Thermal Conductivity and Petrophysical Parameters
3. Definitions
3.1. Definition I: Grey Data Sequence
3.2. Definition II: Mirror of Grey Data Sequence
3.3. Definition-III: Grey Relation
3.4. Definition-IV: Grey Relational Grade
3.5. Definition-V: Absolute Grey Relational Grade
3.6. Definition-VI: Second Synthetic Grey Relational Grade
3.7. Definition-VII: Zero-Starting Point Image
3.8. Definition-VIII: |si|, |sj|, and |si sj|
3.9. Definition-IX: Initialing Operator
3.10. Definition-X: Averaging Operator
3.11. Definition-XI: Minimizing Operator
3.12. Definition-XII: Grey Incidence Direction
3.13. Definition-XIII: Javed’s Grey Incidence Scale
3.14. Definition-XIV: Javed’s Confidence Level Scale
4. Methods
4.1. Data Collection
4.2. Data Analysis Methods
4.2.1. Deng’s GRA Method
- (a)
- Calculating the initial image (or average image) of X0 and Xi, i = 1, 2, …, m,whereXi’ = Xi/xi(1) = (xi’(1), xi’(2), …, xi’(n)); i = 0, 1, 2, …, m.
- (b)
- Computing the difference sequences of X0’ and Xi’, i = 1, 2, …, m, asΔi(k) = |x0’(k) − xi’(k)|, Δ = (Δi(1), Δi(2), …, Δi(n)), i = 1, 2, …, m.
- (c)
- Finding the maximum and minimum differencesM = maxi maxk Δi(k)m = mini mink Δi(k).
- (d)
- Calculating grey relational coefficients by
- (e)
- Computing the grey relational grade (Deng’s degree of grey incidence) by
4.2.2. Bidirectional Absolute GRA Method
- (a)
- Prepare the data sequences and their mirror sequences (see definitions I and II)
- (b)
- Normalize the data sequences, using the minimizing operator (see definition-XI), to bring the range of data values in each sequence within 0 and 1.
- (c)
- Calculate the zero-starting point images of the data sequences (see definition-VII).
- (d)
- Calculate |si|, |sj| and |sj – si| (see definition-VIII).
- (e)
- Calculate Absolute GRG (ε) by [3]
- (f)
4.2.3. Second Synthetic GRA Method
- (a)
- Calculate Deng’s GRG.
- (b)
- Calculate the bidirectional absolute GRG (or absolute GRG).
- (c)
- Calculate the second synthetic GRG given by [6,22,25]:
5. Results
5.1. Determining the Overall Relationships Through Second Synthetic Grey Relational Analysis
For cemented samples: | Porosity > Density > Permeability |
For uncemented samples: | Porosity > Density > Permeability. |
For cemented samples: | Porosity > Density > Permeability |
For uncemented samples: | Porosity > Density > Permeability. |
5.2. Determining the Direction of Relationships through Bidirectional Absolute Grey Relational Analysis (BAGRA)
6. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Frutiger, J.; Jones, M.; Ince, N.G.; Sin, G. From property uncertainties to process simulation uncertainties–Monte Carlo methods in SimSci PRO/II process simulator. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018; Volume 44, pp. 1489–1494. [Google Scholar]
- Cerrillo-Briones, I.M.; Ricardez-Sandoval, L.A. Robust optimization of a post-combustion CO2 capture absorber column under process uncertainty. Chim. Eng. Res. Des. 2019, 144, 386–396. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.F.; Yang, Y.; Forrest, J. Grey Data Analysis—Methods, Models and Applications; Springer: Singapore, 2016. [Google Scholar]
- Javed, S.A.; Syed, A.M.; Javed, S. Perceived Organizational Performance and Trust in project manager and top management in Project-based organizations: Comparative Analysis using Statistical and Grey Systems methods. Grey Syst. Theory Appl. 2018, 8, 230–245. [Google Scholar] [CrossRef]
- Jiang, B.C.; Tasi, S.L.; Wang, C.C. Machine vision-based gray relational theory applied to IC marking inspection. IEEE Trans. Semicond. Manuf. 2002, 15, 531–539. [Google Scholar] [CrossRef]
- Javed, S.A. A novel research on Grey Incidence Analysis models and its application in Project Management. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2019. [Google Scholar]
- Tzeng, G.H.; Huang, J.J. Multiple Attribute Decision Making: Methods and Applications; Chapman and Hall/CRC: Boca Raton, FL, USA, 2011. [Google Scholar]
- Hussain, M.Z.; Khan, S.; Sarmah, P. Optimization of Powder Metallurgy Processing Parameters of Al2O3/Cu Composite through Taguchi Method with Grey Relational Analysis. J. King Saud Univ. -Eng. Sci. 2019. [Google Scholar] [CrossRef]
- Maniyar, K.G.; Ingole, D.S. Multi response Optimization of EDM Process Parameters for Aluminium Hybrid Composites by GRA. Mater. Today Proc. 2018, 5, 19836–19843. [Google Scholar] [CrossRef]
- Chauhan, N.K.; Das, A.K.; Rajesha, S. Optimization of process parameters using grey relational analysis and Taguchi method during micro-EDMing. Mater. Today Proc. 2018, 5, 27178–27184. [Google Scholar] [CrossRef]
- Gandhi, S.V.; Rahul, M.C. Experimental Investigation of Wet Chemical Machining and Optimization of Process Parameters Using Grey Relational Analysis for SS 316L. Mater. Today Proc. 2018, 5, 23908–23916. [Google Scholar] [CrossRef]
- Umamaheswarrao, P.; Raju, D.R.; Suman, K.N.S.; Sankar, B.R. Multi objective optimization of process parameters for hard turning of AISI 52100 steel using Hybrid GRA-PCA. Procedia Comput. Sci. 2018, 133, 703–710. [Google Scholar] [CrossRef]
- Aslantas, K.; Ekici, E.; Çiçek, A. Optimization of process parameters for micro milling of Ti-6Al-4V alloy using Taguchi-based gray relational analysis. Measurement 2018, 128, 419–427. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Y.; Zhao, J.; Chen, Y.; Mo, S.; Gong, Y. Grey relational analysis of an integrated cascade utilization system of geothermal water. Int. J. Green Energy 2016, 13, 14–27. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, X.; Huang, X.; Wu, S. Morphological characterization of superfine pulverized coal particles. 1. Fractal characteristics and economic fineness. Energy Fuels 2010, 24, 844–855. [Google Scholar] [CrossRef]
- Arce, M.E.; Saavedra, Á.; Míguez, J.L.; Granada, E. The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review. Renew. Sustain. Energy Rev. 2015, 47, 924–932. [Google Scholar] [CrossRef]
- Dong, W.; Liu, S.; Fang, Z. On modeling mechanisms and applicable ranges of grey incidence analysis models. Grey Syst. Theory Appl. 2018, 8, 448–461. [Google Scholar] [CrossRef]
- Delcea, C.; Popa, C.D.S.; Boloş, M. Consumers’ Decisions in Grey Online Social Networks. J. Grey Syst. 2015, 27, 12–27. [Google Scholar]
- Zhang, C.; Duan, L.; Liu, H.; Zhang, Y.; Yin, L.; Sun, Q.; Lu, Q. Analysis of patients’ attitudes towards medical service prices in different regions based on grey relational theory. Grey Syst. Theory Appl. 2019. [Google Scholar] [CrossRef]
- Liu, S.F.; Fang, Z.G.; Lin, Y. Study on a new definition of degree of grey incidence. J. Grey Syst. 2006, 9, 115–122. [Google Scholar]
- Liu, S.F.; Fang, Z.G.; Lin, Y. A new definition for the degree of grey incidence. Sci. Inq. 2006, 7, 111–124. [Google Scholar]
- Javed, S.A.; Liu, S.F. Evaluation of Outpatient Satisfaction and Service Quality of Pakistani Healthcare Projects: Application of a novel Synthetic Grey Incidence Analysis model. Grey Syst. Theory Appl. 2018, 8, 462–480. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, S.; Ren, H. Sensitivity analysis of grey relational ordering. In Proceedings of the 2007 IEEE International Conference on Systems, Man and Cybernetics, Montréal, Canada, 7–10 October 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 2210–2221. [Google Scholar]
- Zerrouki, A.A.; Geraud, Y.; Diraison, M.; Baddari, K. A Preliminary study of relationships between thermal conductivity and petrophysical parameters in Hamra Quartzites reservoir, Hassi Messaoud field (Algeria). J. Afr. Earth Sci. 2019. [Google Scholar] [CrossRef]
- Javed, S.A.; Liu, S.F.; Mahmoudi, A.; Nawaz, M. Patients’ Satisfaction and Public and Private Sectors’ Healthcare Service Quality in Pakistan: Application of Grey Decision Analysis approaches. Int. J. Health Plan. Manag. 2019, 34, e168–e182. [Google Scholar] [CrossRef]
- Javed, S.A.; Mahmoudi, A.; Khan, A.M.; Javed, S.; Liu, S.F. A Critical Review: Shape Optimization of Welded Plate Heat Exchangers Based on Grey Correlation Theory. Appl. Therm. Eng. 2018, 144, 593–599. [Google Scholar] [CrossRef]
- Wei, W.; Liang, J. Information fusion in rough set theory: An overview. Inf. Fusion 2019, 48, 107–118. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Feylizadeh, M.R.; Darvishi, D.; Liu, S. Grey-fuzzy solution for multi-objective linear programming with interval coefficients. Grey Syst. Theory Appl. 2018, 8, 312–327. [Google Scholar] [CrossRef]
- Wu, Q.; Lu, Z. Real formal concept analysis based on grey-rough set theory. Knowl. -Based Syst. 2009, 22, 38–45. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Bagherpour, M.; Javed, S.A. Grey Earned Value Management: Theory and Applications. IEEE Trans. Eng. Manag. 2019. [Google Scholar] [CrossRef]
- Javed, S.A.; Liu, S.F. Bidirectional Absolute GRA/GIA model for Uncertain Systems: Application in Project Management. IEEE Access. 2019, 7, 60885–60896. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Liu, S.F.; Javed, S.A.; Abbasi, M. A Novel Method of Solving Linear Programming with Grey parameters. J. Intell. Fuzzy Syst. 2019, 36, 161–172. [Google Scholar] [CrossRef]
- Javed, S.A.; Liu, S.F. Predicting the Research Output/Growth of Selected Countries: Application of Even GM (1, 1) and NDGM Models. Scientometrics 2018, 115, 395–413. [Google Scholar] [CrossRef]
- Zhicheng, Y.; Lijun, W.; Zhaokuo, Y.; Haowen, L. Shape optimization of welded plate heat exchangers based on grey correlation theory. Appl. Therm. Eng. 2017, 123, 761–769. [Google Scholar] [CrossRef]
- Chambers, N.; Hamzacebi, C.; Bayramoglu, M.F. Grey System Theory Supported Markowitz Portfolio Optimization during High Volatility Periods. J. Grey Syst. 2016, 28, 79–95. [Google Scholar]
- Liu, S.F.; Forrest, J. The mysteries for continual growth of grey system theory. In Proceedings of the 2007 IEEE International Conference on Systems, Man and Cybernetics, Montréal, Canada, 7–10 October 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 2155–2159. [Google Scholar]
- Zhang, K.; Wang, Y.; Xin, J.; Xu, Y. Multivariate Absolute Degree of Grey Incidence Based On Distribution Characteristics Of Points. Trans. Nanjing Univ. Aeronaut. Astronaut 2012, 29, 145–151. [Google Scholar]
- Liu, S.F.; Lin, Y. Grey Systems—Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Yuan, C.; Yang, Y.; Chen, D.; Liu, S.F. Proximity and Similitude of Sequences Based on Grey Relational Analysis. J. Grey Syst. 2014, 26, 57–74. [Google Scholar]
- Tung, C.T.; Lee, Y.J. The innovative performance evaluation model of grey factor analysis: A case study of listed biotechnology corporations in Taiwan. Expert Syst. Appl. 2010, 37, 7844–7851. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, X.; Xiong, C. A methodology for evaluating micro-surfacing treatment on asphalt pavement based on grey system models and grey rational degree theory. Constr. Build. Mater. 2017, 150, 214–226. [Google Scholar] [CrossRef]
- Sheikh, A.H.A.; Ikram, M.; Ahmad, M.; Qadeer, H.; Nawaz, M. Evaluation of key Factors influencing Process Quality during Construction Projects in Pakistan. Grey Syst. Theory and Appl. 2019. [Google Scholar] [CrossRef]
- Diba, S.; Xie, N. Sustainable Supplier Selection for Satrec Vitalait Milk Company in Senegal using novel Grey Relational Analysis method. Grey Syst. Theory Appl. 2019. [Google Scholar] [CrossRef]
- Gu, Y.; Rühaak, W.; Bär, K.; Sass, I. Using seismic data to estimate the spatial distribution of rock thermal conductivity at reservoir scale. Geothermics 2017, 66, 61–72. [Google Scholar] [CrossRef]
- Mielke, P.; Bär, K.; Sass, I. Determining the relationship of thermal conductivity and compressional wave velocity of common rock types as a basis for reservoir characterization. J. Appl. Geophys. 2017, 140, 135–144. [Google Scholar] [CrossRef]
- Arafin, S. Thermophysical properties of reservoir rocks. J. Phys. Chem. Solids 2019, 129, 99–110. [Google Scholar] [CrossRef]
- Cermak, V.; Rybach, L. Thermal Properties. In Zahlenwerte und Funktionen aus Naturwissenschaft und Technik: Neue Serie.—Numerical Data and Functional Relationships in Science and Technology: New Series c; Angenheister, G., Cermák, V., Hellwege, K.-H., Landolt, H., Eds.; Springer: Berlin, Germany, 1982; pp. 310–314. [Google Scholar]
- Šperl, J.; Trčková, J. Permeability and porosity of rocks and their relationship based on laboratory testing. Acta Geodyn Geomater 2008, 5, 41–47. [Google Scholar]
- Shen, X.; Li, L.; Cui, W.; Feng, Y. Improvement of fractal model for porosity and permeability in porous materials. Int. J. Heat Mass Transf. 2018, 121, 1307–1315. [Google Scholar] [CrossRef]
- Somerton, W.H. Some Thermal Characteristics of Porous Rocks; Society of Petroleum Engineers: Kuala Lumpur, Malaysia, 1958. [Google Scholar]
- Brigaud, F.; Vasseur, G. Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks. Geophys. J. Int. 1989, 98, 525–542. [Google Scholar] [CrossRef] [Green Version]
- Clauser, C.; Huenges, E. Thermal conductivity of rock and minerals. In Rock Physics and Phase Relation-a Handbook of Physical Constants; Ahrens, T.J., Ed.; AGU Reference Shelf: Hoboken, NJ, USA, 1995; Volume 3, pp. 105–126. [Google Scholar]
- Midttomme, K.; Roaldset, E. The effect of grain size on thermal conductivity of quartz sands and silts. Pet. Geosci. 1998, 4, 165–172. [Google Scholar] [CrossRef]
- Barry-Macaulay, D.; Bouazza, A.; Singh, R.M.; Wang, B.; Ranjith, P.G. Thermal conductivity of soils and rocks from the Melbourne (Australia) region. Eng. Geol. 2013, 164, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Duchkov, A.D.; Sokolova, L.S.; Rodyakin, S.V.; Chernysh, P.S. Thermal conductivity of the sedimentary-cover rocks of the West Siberian Plate in relation to their humidity and porosity. Russ. Geol. Geophys. 2014, 55, 784–792. [Google Scholar] [CrossRef]
- Schön, J. (Ed.) Physical Properties of Rocks: Fundamentals and Principles of Petrophysics; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Asadi, I.; Shafigh, P.; Hassan, Z.F.B.A.; Mahyuddin, N.B. Thermal conductivity of concrete—A review. J. Build. Eng. 2018, 20, 81–93. [Google Scholar] [CrossRef]
- Haffen, S.; Géraud, Y.; Rosener, M.; Diraison, M. Thermal conductivity and porosity maps for different materials: A combined case study of granite and sandstone. Geothermics 2017, 66, 143–150. [Google Scholar] [CrossRef]
- Ouali, S. Thermal conductivity in relation to porosity and geological stratigraphy. Geotherm. Train. Rep. Cent. Dev. Renew. Energ. Alger. 2009, 4, 23–29. [Google Scholar]
- Duchkov, A.D.; Ayunov, D.E.; Rodyakin, S.V.; Yan, P.A. The study of the relationship between thermal conductivity and porosity, permeability, humidity of sedimentary rocks of the West Siberian Plate. Геoресурсы 2018, 20. [Google Scholar]
- Nagy, B.; Nehme, S.G.; Szagri, D. Thermal properties and modeling of fiber reinforced concretes. Energy Procedia 2015, 78, 2742–2747. [Google Scholar] [CrossRef]
- Łydżba, D.; Rajczakowska, M.; Różański, A.; Stefaniuk, D. Influence of the moisture content and temperature on the thermal properties of soils: Laboratory investigation and theoretical analysis. Procedia Eng. 2014, 91, 298–303. [Google Scholar] [CrossRef]
- Weibel, R.; Olivarius, M.; Jakobsen, F.C.; Whitehouse, M.; Larsen, M.; Midtgaard, H.; Nielsen, K. Thermogenetic degradation of early zeolite cement: An important process for generating anomalously high porosity and permeability in deeply buried sandstone reservoirs? Mar. Pet. Geol. 2019, 103, 620–645. [Google Scholar] [CrossRef]
- Costa, A. Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, T.; Liu, W.; Zhang, J.; Feng, Q.; Lu, H.; Peng, P.A. Relationships among composition, porosity and permeability of Longmaxi Shale reservoir in the Weiyuan Block, Sichuan Basin, China. Mar. Pet. Geol. 2019, 102, 33–47. [Google Scholar] [CrossRef]
- Mielke, P.; Bignall, G.; Sass, I. Permeability and thermal conductivity measurements of near surface units at the Wairakei Geothermal Field, New Zealand. In Proceedings of the World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010. [Google Scholar]
- Jiang, L.; Roskilly, A.P. Thermal conductivity, permeability and reaction characteristic enhancement of ammonia solid sorbents: A review. Int. J. Heat Mass Transf. 2019, 130, 1206–1225. [Google Scholar] [CrossRef]
- Li, B.; Hu, L.; He, C.; Mi, C. The Reverse Order of Grey Incidence Analysis and Two Judgment Principles. In Proceedings of the 2010 IEEE International Conference on Systems Man and Cybernetics (ICSMC), Istanbul, Turkey, 10–13 October 2010. [Google Scholar]
- Zhao, X.G.; Xu, H.R.; Zhao, Z.; Guo, Z.; Cai, M.; Wang, J. Thermal conductivity of thermally damaged Beishan granite under uniaxial compression. Geothermics 2019, 66, 61–72. [Google Scholar] [CrossRef]
|ε ±| | (0.50, 0.60) | (0.60, 0.70) | [0.70, 0.80) | [0.80, 0.90) | [0.90, 1.0] |
---|---|---|---|---|---|
Categories | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 |
Interpretation | Weak relation * | Moderately strong relation * | Appropriately strong relation * | Sufficiently strong relation * | Extremely strong relation * |
|Δ| | [0, 0.05] | (0.05, 0.10) | [0.10, 0.50] |
---|---|---|---|
Level of Confidence in Grey Direction | Low | Medium | High |
Level of Uncertainty in Grey Direction | High | Medium | Low |
γ | ε ± | ρ | Rank | R | Rank | r | Rank | ||
---|---|---|---|---|---|---|---|---|---|
Cemented (N = 15) | TC (W/mK) | ||||||||
Density (g/cm3) | 0.9623 | (0.7069) | 0.8346 | 2 | 0.18 | 2 | −0.26 | 2 | |
Porosity (%) | 0.9200 | (0.8385) | 0.8793 | 1 | 0.44 | 1 | −0.43 | 1 | |
Permeability (md) | 0.7699 | 0.7435 | 0.7567 | 3 | 0.1 | 3 | 0.11 | 3 | |
Uncemented (N = 13) | TC (W/mK) | ||||||||
Density (g/cm3) | 0.9995 | (0.6558) | 0.8277 | 2 | 0.51 | 2 | −0.50 | 2 | |
Porosity (%) | 0.9985 | (0.9037) | 0.9511 | 1 | 0.73 | 1 | −0.73 | 1 | |
Permeability (md) | 0.9358 | 0.7105 | 0.8232 | 3 | <0.1 | 3 | 0.30 | 3 |
ε ± | Confidence Level | r | ||
---|---|---|---|---|
(Cemented samples) | ||||
TC (W/mK) | 1 | 0.3438 | High | |
Density (g/cm3) | −0.7069 | −0.0126 | Low | −0.26 |
Porosity (%) | −0.8385 | −0.1099 | High | −0.43 |
Permeability (md) | 0.7435 | 0.1728 | High | 0.11 |
(Uncemented samples) | ||||
TC (W/mK) | 1 | 0.1248 | High | |
Density (g/cm3) | −0.6558 | −0.0572 | Medium | −0.50 |
Porosity (%) | −0.9037 | −0.2109 | High | −0.73 |
Permeability (md) | 0.7105 | 0.1019 | High | 0.30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, S.A.; Khan, A.M.; Dong, W.; Raza, A.; Liu, S. Systems Evaluation through New Grey Relational Analysis Approach: An Application on Thermal Conductivity—Petrophysical Parameters’ Relationships. Processes 2019, 7, 348. https://doi.org/10.3390/pr7060348
Javed SA, Khan AM, Dong W, Raza A, Liu S. Systems Evaluation through New Grey Relational Analysis Approach: An Application on Thermal Conductivity—Petrophysical Parameters’ Relationships. Processes. 2019; 7(6):348. https://doi.org/10.3390/pr7060348
Chicago/Turabian StyleJaved, Saad Ahmed, Aqib Mashood Khan, Wenjie Dong, Adil Raza, and Sifeng Liu. 2019. "Systems Evaluation through New Grey Relational Analysis Approach: An Application on Thermal Conductivity—Petrophysical Parameters’ Relationships" Processes 7, no. 6: 348. https://doi.org/10.3390/pr7060348
APA StyleJaved, S. A., Khan, A. M., Dong, W., Raza, A., & Liu, S. (2019). Systems Evaluation through New Grey Relational Analysis Approach: An Application on Thermal Conductivity—Petrophysical Parameters’ Relationships. Processes, 7(6), 348. https://doi.org/10.3390/pr7060348