Evaluation of Conditions Affecting Properties of Gac (Momordica Cocochinensis Spreng) Oil-Loaded Solid Lipid Nanoparticles (SLNs) Synthesized Using High-Speed Homogenization Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Gac Oil-Loaded SLNs
2.3. Effect of Homogenization Conditions on Particle Size Distribution
2.4. Effect of Gac Oil Content and Total Oil Phase on Particle Size Distribution
2.5. Carotenoids Entrapment Efficiency (EE%)
2.6. Stability of Gac Oil-Loaded SLNs
3. Results
3.1. Effect of Hot Homogenization Temperature
3.2. Effect of Hot Homogenization Time
3.3. Effect of Cold Homogenization Time
3.4. Effects of Total Oil Phase Content on Nanoparticle Size
3.5. Laser Diffraction Spectrometry (LDS) of Gac Oil-Loaded SLNs
3.6. Transmission Electron Microscopy (TEM) of Gac Oil-Loaded SLNs
3.7. Stability of Gac Oil-Loaded SLNs
3.8. Stability of Carotenoids in SLNs
3.9. Effects of Storage Temperature on Gac Oil-Loaded SLNs Stability
3.10. Effects of UV Light on Gac Oil-Loaded SLNs Stability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Microencapsulation of vitamin A: A review. Trends Food Sci. Technol. 2016, 51, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Lasa-Saracibar, B.; Estella-Hermoso de Mendoza, A.; Guada, M.; Dios-Vieitez, C.; Blanco-Prieto, M.J. Lipid nanoparticles for cancer therapy: State of the art and future prospects. Expert Opin. Drug Deliv. 2012, 9, 1245–1261. [Google Scholar] [CrossRef] [PubMed]
- Aoki, H.; Kieu, N.T.; Kuze, N.; Tomisaka, K.; Van Chuyen, N. Carotenoid pigments in GAC fruit Momordica cochinchinensis SPRENG). Biosci. Biotechnol. Biochem. 2002, 66, 2479–2482. [Google Scholar] [CrossRef] [PubMed]
- Ishida, B.K.; Turner, C.; Chapman, M.H.; McKeon, T.A. Fatty acid and carotenoid composition of gac (Momordica cochinchinensis Spreng) fruit. J. Agric. Food Chem. 2004, 52, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Kha, T.C.; Nguyen, M.H.; Roach, P.D.; Parks, S.E.; Stathopoulos, C. Gac fruit: Nutrient and phytochemical composition, and options for processing. Food Rev. Int. 2013, 29, 92–106. [Google Scholar] [CrossRef]
- Vuong, L.T.; Franke, A.A.; Custer, L.J.; Murphy, S.P. Momordica cochinchinensis Spreng. (gac) fruit carotenoids reevaluated. J. Compos. Anal. 2006, 19, 664–668. [Google Scholar] [CrossRef]
- Lan, C.H.; Hanh, P.T.; Osorio-Puentes, F.J.; Waché, Y. Stability of carotenoid extracts of gấc (Momordica cochinchinensis) towards cooxidation—Protective effect of lycopene on β-caroten. Food Res. Int. 2011, 44, 2252–2257. [Google Scholar]
- Shi, J. Lycopene in Tomatoes: Chemical and Physical Properties Affected by Food Processing. Crit. Rev. Biotechnol. 2000, 20, 293–334. [Google Scholar] [CrossRef]
- Brown, M.J.; Ferruzzi, M.G.; Nguyen, M.L.; Cooper, D.A.; Eldridge, A.L.; Schwartz, S.J.; White, W.S. Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am. J. Clin. Nutr. 2004, 80, 396–403. [Google Scholar] [CrossRef] [Green Version]
- Kuhnlein, H.V. Karat, pulque, and gac. Three shining stars in the traditional food galaxy. Nutr. Nev. 2004, 62, 439–442. [Google Scholar] [CrossRef]
- Unlu, N.Z.; Bohn, T.; Clinton, S.K.; Schwartz, S.J. Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. J. Nutr. 2005, 135, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Rao, A.V. Tomato lycopene and its role in human health and chronic diseases. Can. Med. Assoc. J. 2000, 163, 739–744. [Google Scholar]
- Lu, R.; Dan, H.; Wu, R.; Meng, W.; Liu, N.; Jin, X.; Zhou, M.; Zeng, X.; Zhou, G.; Chen, Q. Lycopene: Features and potential significance in the oral cancer and precancerous lesions. J. Oral Pathol. Med. 2011, 40, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, X.; Ma, Y.; Zhai, G.; Li, L.B.; Lou, H.X. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Cont. Release 2009, 133, 238–244. [Google Scholar] [CrossRef]
- Yang, J.; Hu, Y.; Wang, R.; Xie, D. Nanoparticle encapsulation in vesicles formed by amphiphilic diblock copolymers. Soft Matter 2017, 13, 7840–7847. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Ting, Y.; Zeng, X.; Huang, Q. Bioactive Peptides/Chitosan Nanoparticles Enhance Cellular Antioxidant Activity of (−)-Epigallocatechin-3-gallate. J. Agric. Food Chem. 2013, 61, 875–881. [Google Scholar] [CrossRef]
- Li, Z.; Suslick, K.S. Ultrasonic Preparation of Porous Silica-Dye Microspheres: Sensors for Quantification of Urinary Trimethylamine N -Oxide. ACS Appl. Mater. Interfaces 2018, 10, 15820–15828. [Google Scholar] [CrossRef]
- Oehlke, K.; Behsnilian, D.; Mayer-Miebach, E.; Weidler, P.G.; Greiner, R. Edible solid lipid nanoparticles (SLN) as carrier system for antioxidants of different lipophilicity. PLoS ONE 2017, 12, e0171662. [Google Scholar] [CrossRef]
- Tiyaboonchai, W.; Tungpradit, W.; Plianbangchang, P. Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. Int. J. Pharm. 2007, 337, 299–306. [Google Scholar] [CrossRef]
- Phan, A.N.Q.; Bach, L.G.; Nguyen, T.D.; Le, N.T.H. Efficient Method for Preparation of Rutin Nanosuspension Using Chitosan and Sodium Tripolyphosphate Crosslinker. J. Nanosci. Nanotechnol. 2019, 19, 974–978. [Google Scholar] [CrossRef]
- Mai, H.C.; Le, T.T.T.; Diep, T.T.; Le, T.H.N.; Nguyen, D.T.; Bach, L.G. Development of Soild Lipid Nanoparticles of Gac (Momordica cocochinensis Spreng) Oil by Nano-Emulsion Technique. Asian J. Chem. 2018, 30, 293–297. [Google Scholar] [CrossRef]
- Carla, V. The size of solid lipid nanoparticles: An interpretation from experimental design. Colloids Surf. B 2011, 84, 117–130. [Google Scholar]
- DongZhi, H. The production and characteristics of soilid nanoparticles (SLNs). Biomaterials 2003, 24, 1781–1785. [Google Scholar]
- Garud, A.; Singh, D.; Garud, N. Solid lipid nanoparticles (SLNs): Method, characterization and applications. Int. Curr. Pharm. J. 2012, 1, 384–393. [Google Scholar] [CrossRef]
- Campos, D.A.; Madureira, A.R.; Gomes, A.M.; Sarmento, B.; Pintado, M.M. Optimization of the production of solid Witepsol nanoparticles loaded with rosmarinic acid. Colloids Surf. B 2014, 115, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, A.; Gramdorf, S.; Müller, R.H.; Kurz, T. β-Carotene-Loaded Nanostructured Lipid Carriers. J. Food Sci. 2008, 73, N1–N6. [Google Scholar] [CrossRef] [PubMed]
- Helgason, T.; Awad, T.S.; Kristbergsson, K.; Decker, E.A.; McClements, D.J.; Weiss, J. Impact of Surfactant Properties on Oxidative Stability of β-Carotene Encapsulated within Solid Lipid Nanoparticles. J. Agric. Food Chem. 2009, 57, 8033–8040. [Google Scholar] [CrossRef]
- Mohammadi, M.; Pezeshki, A.; Mesgari Abbasi, M.; Ghanbarzadeh, B.; Hamishehkar, H. Vitamin D3-Loaded Nanostructured Lipid Carriers as a Potential Approach for Fortifying Food Beverages; in Vitro and in Vivo Evaluation. Adv. Pharm. Bull. 2017, 7, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Mozafari, M.R. Nanocarrier Technologies: Frontiers of Nanotherapy, 1st ed.; Springer: Heidelberg, The Netherlands, 2006; pp. 41–50. [Google Scholar]
- Effat, S.F.; Saman, A.N.; Zahra, T. Novel formulation and evaluation of a Q10-loaded solid lipid nanoparticle cream: In vitro and in vivo studies. Int. J. Nanomed. 2011, 6, 611–617. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, H.C.; Nguyen, T.S.V.; Le, T.H.N.; Nguyen, D.C.; Bach, L.G. Evaluation of Conditions Affecting Properties of Gac (Momordica Cocochinensis Spreng) Oil-Loaded Solid Lipid Nanoparticles (SLNs) Synthesized Using High-Speed Homogenization Process. Processes 2019, 7, 90. https://doi.org/10.3390/pr7020090
Mai HC, Nguyen TSV, Le THN, Nguyen DC, Bach LG. Evaluation of Conditions Affecting Properties of Gac (Momordica Cocochinensis Spreng) Oil-Loaded Solid Lipid Nanoparticles (SLNs) Synthesized Using High-Speed Homogenization Process. Processes. 2019; 7(2):90. https://doi.org/10.3390/pr7020090
Chicago/Turabian StyleMai, Huynh Cang, Thai Sa Vin Nguyen, Thi Hong Nhan Le, Duy Chinh Nguyen, and Long Giang Bach. 2019. "Evaluation of Conditions Affecting Properties of Gac (Momordica Cocochinensis Spreng) Oil-Loaded Solid Lipid Nanoparticles (SLNs) Synthesized Using High-Speed Homogenization Process" Processes 7, no. 2: 90. https://doi.org/10.3390/pr7020090
APA StyleMai, H. C., Nguyen, T. S. V., Le, T. H. N., Nguyen, D. C., & Bach, L. G. (2019). Evaluation of Conditions Affecting Properties of Gac (Momordica Cocochinensis Spreng) Oil-Loaded Solid Lipid Nanoparticles (SLNs) Synthesized Using High-Speed Homogenization Process. Processes, 7(2), 90. https://doi.org/10.3390/pr7020090