Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = gac oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1667 KiB  
Article
A Study on the Enhancement of Storage Stability in Formulated Gac Fruit Oil and Its Encapsulated Form
by Po-Hua Wu, Chia-Yu Lin, Ming-Chang Wu, Shih-Lun Liu, Sz-Jie Wu and Chang-Wei Hsieh
Processes 2025, 13(6), 1913; https://doi.org/10.3390/pr13061913 - 17 Jun 2025
Viewed by 654
Abstract
The fruit of Momordica cochinchinensis Spreng., commonly known as Gac fruit, contains arils rich in carotenoids and unsaturated fatty acids, making it suitable for use as a natural colorant, flavor enhancer, and dietary supplement. This study examined Gac oil extracted from locally cultivated [...] Read more.
The fruit of Momordica cochinchinensis Spreng., commonly known as Gac fruit, contains arils rich in carotenoids and unsaturated fatty acids, making it suitable for use as a natural colorant, flavor enhancer, and dietary supplement. This study examined Gac oil extracted from locally cultivated Gac fruit in Taiwan and evaluated the impact of different encapsulation methods and press through packaging (PTP) packaging on its oxidative stability during storage. The Gac oil was found to contain exceptionally high levels of β-carotene (up to 6047.52 ± 16.15 ppm) and lycopene (3192.84 ± 20.21 ppm). Among the tested formulations, soft capsules demonstrated lower peroxide value (PV) and better retention of carotenoids, including lycopene β-carotene compared to hard capsules. Furthermore, capsules stored in PTP packaging exhibited enhanced protection against oxidation. Overall, soft capsules combined with PTP packaging provided the most effective approach for maintaining the nutritional quality and oxidative stability of Gac oil during storage. Full article
(This article belongs to the Special Issue Extraction Processes, Modeling, and Optimization of Oils)
Show Figures

Figure 1

14 pages, 3590 KiB  
Article
Effects of Different Extraction Methods on the Structural and Functional Properties of Soluble Dietary Fibre from Sweet Potatoes
by Liuqing Yang, Rongan Zhu, Ning Zhang, Wenya Zhao and Chuyan Wang
Foods 2024, 13(15), 2395; https://doi.org/10.3390/foods13152395 - 29 Jul 2024
Cited by 3 | Viewed by 2247
Abstract
In this study, hot water treatment (WT), ultrasonic treatment (UT), ultrasonic-sodium hydroxide treatment (UST), ultrasonic-enzyme treatment (UET), and ultrasonic-microwave treatment (UMT) were used to treat sweet potatoes. The structural, physicochemical, and functional properties of the extracted soluble dietary fibres (SDFs) were named WT-SDF, [...] Read more.
In this study, hot water treatment (WT), ultrasonic treatment (UT), ultrasonic-sodium hydroxide treatment (UST), ultrasonic-enzyme treatment (UET), and ultrasonic-microwave treatment (UMT) were used to treat sweet potatoes. The structural, physicochemical, and functional properties of the extracted soluble dietary fibres (SDFs) were named WT-SDF, UT-SDF, UST-SDF, UET-SDF, and UMT-SDF, respectively. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal properties, and Brunauer–Emmett–Teller (BET) analysis were employed. The structural results indicated that the UST-SDF exhibited the best thermal stability, highest crystallinity, and maximum specific surface area. Moreover, compared to hot water extraction, ultrasonic extraction, or ultrasonic extraction in combination with other methods, enhanced the physicochemical and functional properties of the SDF, including extraction yield, water-holding capacity (WHC), oil-holding capacity (OHC), glucose adsorption capacity (GAC), glucose dialysis retardation index (GDRI), sodium cholate adsorption capacity (SCAC), cholesterol adsorption capacity (CAC), nitrite ion adsorption capacity (NIAC), and antioxidant properties. Specifically, the UST-SDF and UMT-SDF showed better extraction yield, WHC, OHC, GAC, CAC, SCAC, and NIAC values than the other samples. In summary, these results indicate that UST and UMT could be applied as ideal extraction methods for sweet potato SDF and that UST-SDF and UMT-SDF show enormous potential for use in the functional food industry. Full article
Show Figures

Graphical abstract

16 pages, 2332 KiB  
Article
Optimization of Extraction Conditions from Gac Fruit and Utilization of Peel-Derived Biochar for Crystal Violet Dye Removal
by Nhat-Thien Nguyen, Pin-Ru Chen, Ru-Hau Ye, Kai-Jen Chuang, Chang-Tang Chang and Gui-Bing Hong
Molecules 2024, 29(14), 3435; https://doi.org/10.3390/molecules29143435 - 22 Jul 2024
Viewed by 1643
Abstract
Gac fruit (Momordica cochinchinensis Spreng.) is a prominent source of carotenoids, renowned for its exceptional concentration of these compounds. This study focuses on optimizing the extraction of active components from the aril of gac fruit by evaluating the effects of extraction temperature, [...] Read more.
Gac fruit (Momordica cochinchinensis Spreng.) is a prominent source of carotenoids, renowned for its exceptional concentration of these compounds. This study focuses on optimizing the extraction of active components from the aril of gac fruit by evaluating the effects of extraction temperature, solid–liquid ratio, and extraction time. The primary objective is to maximize the yield of gac oil while assessing its antioxidant capacity. To analyze the kinetics of the solid–liquid extraction process, both first-order and second-order kinetic models were employed, with the second-order model providing the best fit for the experimental data. In addition, the potential of gac fruit peel as a precursor for biochar production was investigated through carbonization. The resultant biochars were evaluated for their efficacy in adsorbing crystal violet (CV) dye from aqueous solutions. The adsorption efficiency of the biochars was found to be dependent on the carbonization temperature, with the highest efficiency observed for BCMC550 (91.72%), followed by BCM450 (81.35%), BCMC350 (78.35%), and BCMC250 (54.43%). The adsorption isotherm data conformed well to the Langmuir isotherm model, indicating monolayer adsorption behavior. Moreover, the adsorption kinetics were best described by the pseudo-second-order model. These findings underscore the potential of gac fruit and its byproducts for diverse industrial and environmental applications, highlighting the dual benefits of optimizing gac oil extraction and utilizing the peel for effective dye removal. Full article
Show Figures

Figure 1

16 pages, 2468 KiB  
Article
Optimization of Enzymolysis Modification Conditions of Dietary Fiber from Bayberry Pomace and Its Structural Characteristics and Physicochemical and Functional Properties
by Zhaolin Zhang, Qin Ruan, Xiaoming Sun and Jianfeng Yuan
Molecules 2024, 29(14), 3415; https://doi.org/10.3390/molecules29143415 - 21 Jul 2024
Cited by 2 | Viewed by 1516
Abstract
Bayberry pomace, a nutrient-rich material abundant in dietary fiber (DF), has historically been underutilized due to a lack of thorough research. This study aimed to investigate the physicochemical and functional properties of the DF. Ultrasonic enzymatic treatment was performed to extract the total [...] Read more.
Bayberry pomace, a nutrient-rich material abundant in dietary fiber (DF), has historically been underutilized due to a lack of thorough research. This study aimed to investigate the physicochemical and functional properties of the DF. Ultrasonic enzymatic treatment was performed to extract the total DF, which was then optimized to produce modified soluble dietary fiber (MSDF) and insoluble dietary fiber (MIDF). The optimized conditions yielded 15.14% of MSDF with a water-holding capacity (WHC) of 54.13 g/g. The DFs were evaluated for their structural, physicochemical, and functional properties. The MSDF showed a higher (p < 0.05) WHC, oil-holding capacity (OHC), swelling capacity (SC), cation exchange capacity (CEC), and glucose adsorption capacity (GAC) (about 14.15, 0.88, 1.23, 1.22, and 0.34 times) compared to the DF. Additionally, the MSDF showed strong, superior radical scavenging and blood sugar-lowering capabilities, with a more porous surface morphology. A Fourier-transform infrared (FT-IR) spectroscopy analysis indicated that enzymatic modification degraded the cellulose and hemicellulose, reducing the DF crystallinity. Overall, the results demonstrated that cellulase hydrolysis could effectively improve the physicochemical and functional properties of DF, thereby paving the way for its development into functional food products. Full article
(This article belongs to the Special Issue Food Polysaccharides: Structure, Properties and Application II)
Show Figures

Figure 1

42 pages, 1394 KiB  
Review
Alternative Assisted Extraction Methods of Phenolic Compounds Using NaDESs
by Mario Coscarella, Monica Nardi, Kalina Alipieva, Sonia Bonacci, Milena Popova, Antonio Procopio, Rosa Scarpelli and Svilen Simeonov
Antioxidants 2024, 13(1), 62; https://doi.org/10.3390/antiox13010062 - 29 Dec 2023
Cited by 18 | Viewed by 4626
Abstract
A renewed understanding of eco-friendly principles is moving the industrial sector toward a shift in the utilization of less harmful solvents as a main strategy to improve manufacturing. Green analytical chemistry (GAC) has definitely paved the way for this transition by presenting green [...] Read more.
A renewed understanding of eco-friendly principles is moving the industrial sector toward a shift in the utilization of less harmful solvents as a main strategy to improve manufacturing. Green analytical chemistry (GAC) has definitely paved the way for this transition by presenting green solvents to a larger audience. Among the most promising, surely DESs (deep eutectic solvents), NaDESs (natural deep eutectic solvents), HDESs (hydrophobic deep eutectic solvents), and HNaDESs (hydrophobic natural deep eutectic solvents), with their unique features, manifest a wide-range of applications, including their use as a means for the extraction of small bioactive compounds. In examining recent advancements, in this review, we want to focus our attention on some of the most interesting and novel ‘solvent-free‘ extraction techniques, such as microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) in relation to the possibility of better exploiting DESs and NaDESs as plausible extracting solvents of the phenolic compounds (PCs) present in different matrices from olive oil components, such as virgin olive pomace, olive leaves and twigs, virgin and extra virgin olive oil (VOO and EVOO, respectively), and olive cake and olive mill wastewaters (OMWW). Therefore, the status of DESs and NaDESs is shown in terms of their nature, efficacy and selectivity in the extraction of bioactive phytochemicals such as secoiridoids, lignans, phenolic acids and alcohols. Related studies on experimental design and processes’ optimization of the most promising DESs/NaDESs are also reviewed. In this framework, an extensive list of relevant works found in the literature is described to consider DESs/NaDESs as a suitable alternative to petrochemicals in cosmetics, pharmaceutical, or food applications. Full article
Show Figures

Graphical abstract

41 pages, 1542 KiB  
Review
Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry
by Delia B. Rodriguez-Amaya, Patricia Esquivel and Antonio J. Meléndez-Martínez
Foods 2023, 12(22), 4080; https://doi.org/10.3390/foods12224080 - 10 Nov 2023
Cited by 15 | Viewed by 6593
Abstract
The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red [...] Read more.
The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red palm oil (α- and β-carotene), along with microalgal Dunaliella β-carotene and Haematococcus astaxanthin and fungal Blakeslea trispora β-carotene and lycopene. Potential microalgal sources are being sought, especially in relation to lutein, for which commercial plant sources are lacking. Research efforts, manifested in numerous reviews and research papers published in the last decade, have been directed to green extraction, microencapsulation/nanoencapsulation, and valorization of processing by-products. Extraction is shifting from conventional extraction with organic solvents to supercritical CO2 extraction and different types of assisted extraction. Initially intended for the stabilization of the highly degradable carotenoids, additional benefits of encapsulation have been demonstrated, especially the improvement of carotenoid solubility and bioavailability. Instead of searching for new higher plant sources, enormous effort has been directed to the utilization of by-products of the fruit and vegetable processing industry, with the application of biorefinery and circular economy concepts. Amidst enormous research activities, however, the gap between research and industrial implementation remains wide. Full article
Show Figures

Graphical abstract

14 pages, 3207 KiB  
Article
Effects of Alkaline Hydrogen Peroxide and Cellulase Modifications on the Physicochemical and Functional Properties of Forsythia suspensa Dietary Fiber
by Kejing Yan, Jiale Liu, Wensheng Yan, Qing Wang, Yanxiong Huo, Saisai Feng, Liangliang Zhang, Qingping Hu and Jianguo Xu
Molecules 2023, 28(20), 7164; https://doi.org/10.3390/molecules28207164 - 19 Oct 2023
Cited by 7 | Viewed by 1646
Abstract
Besides active substances, Forsythia suspensa is rich in dietary fiber (DF), but it is often wasted or discarded and not put to good use. In order to improve the function of Forsythia DF, it was modified using alkaline hydrogen peroxide (AHP) and cellulase (EM). [...] Read more.
Besides active substances, Forsythia suspensa is rich in dietary fiber (DF), but it is often wasted or discarded and not put to good use. In order to improve the function of Forsythia DF, it was modified using alkaline hydrogen peroxide (AHP) and cellulase (EM). Compared to the control DF (ODF), the DF modified using AHP (AHDF) and EM (EMDF) had a looser microstructure, lower crystallinity, and higher oil holding capacity (OHC) and cation exchange capacity (CEC). The AHP treatment significantly increased the water holding capacity (WHC) and water swelling ability (WSA) of the DF, while the EM treatment achieved just the opposite. Moreover, the functional properties of AHDF and EMDF, including their cholesterol adsorption capacity (CAC), nitrite ion adsorption capacity (NAC), glucose adsorption capacity (GAC), glucose dialysis retardation index (GDRI), α-amylase inhibitory activity, and DPPH radical scavenging activity, were far better than those of ODF. Together, the results revealed that AHP and EM modifications could effectively improve or enhance the physicochemical and functional properties of Forsythia suspensa DF. Full article
Show Figures

Figure 1

7 pages, 1182 KiB  
Proceeding Paper
Microemulsions in the Systems with Lecithin and Oils from Tropical Plants for Drug Delivery
by Nguyen Huu Tung and Nataliya M. Murashova
Mater. Proc. 2023, 14(1), 66; https://doi.org/10.3390/IOCN2023-14496 - 5 May 2023
Viewed by 1549
Abstract
It was shown that to obtain reverse microemulsions in lecithin–oleic acid–vaseline oil–vegetable oil–essential oil–water systems, oil from the tropical plant gac (Momordica cochinchinensis) and turmeric essential oil (Curcuma longa) can be used. At least 6.5 wt.% of water can [...] Read more.
It was shown that to obtain reverse microemulsions in lecithin–oleic acid–vaseline oil–vegetable oil–essential oil–water systems, oil from the tropical plant gac (Momordica cochinchinensis) and turmeric essential oil (Curcuma longa) can be used. At least 6.5 wt.% of water can be introduced into the microemulsion at a lecithin concentration of 20 wt.% in the organic phase, with a vaseline oil and gac oil ratio of 1:1 by weight, and an oleic acid and lecithin molar ratio 0.2–0.8. The hydrodynamic diameter of the microemulsion droplets, depending on the content of water and lecithin, was from 3 to 21 nm. Using the dialysis method on the model of the water-soluble dye Rhodamine C, it was shown that the rate of its transfer from the microemulsion to the physiological solution was 15.4 × 10−3 g/(m2∙h); approximately 3.2% of the dye was released in 6 h, which allows for the development of drugs with a sustained release of medicinal substances. Full article
(This article belongs to the Proceedings of The 4th International Online Conference on Nanomaterials)
Show Figures

Figure 1

16 pages, 2471 KiB  
Article
Phenolic Compounds Removal from Olive Mill Wastewater Using the Composite of Activated Carbon and Copper-Based Metal-Organic Framework
by Muna A. Abu-Dalo, Nathir A. F. Al-Rawashdeh, Moath Almurabi, Jehad Abdelnabi and Abeer Al Bawab
Materials 2023, 16(3), 1159; https://doi.org/10.3390/ma16031159 - 29 Jan 2023
Cited by 10 | Viewed by 3448
Abstract
As the industry of olive oil continues to grow, the management of olive mill wastewater (OMW) by-products has become an area of great interest. While many strategies for processing OMW have been established, more studies are still required to find an effective adsorbent [...] Read more.
As the industry of olive oil continues to grow, the management of olive mill wastewater (OMW) by-products has become an area of great interest. While many strategies for processing OMW have been established, more studies are still required to find an effective adsorbent for total phenolic content uptake. Here, we present a composite of a Cu 1,4-benzene dicarboxylate metal-organic framework (Cu (BDC) MOF) and granular activated carbon (GAC) as an adsorbent for total phenolic content removal from OMW. Experimental results demonstrated that the maximum adsorption capacity was 20 mg/g of total phenolic content (TPC) after 4 h. using 2% wt/wt of GAC/Cu (BDC) MOF composite to OMW at optimum conditions (pH of 4.0 and 25 °C). The adsorption of phenolic content onto the GAC/Cu (BDC) MOF composite was described by the Freundlich adsorption and pseudo-second-order reaction. The adsorption reaction was found to be spontaneous and endothermic at 298 K where ΔS° and ΔH° were found to be 0.105 KJ/mol and 25.7 kJ/mol, respectively. While ΔGº value was −5.74 (kJ/mol). The results of this study provide a potential solution for the local and worldwide olive oil industry. Full article
(This article belongs to the Special Issue Recent Progress in Advanced Adsorption Materials)
Show Figures

Figure 1

17 pages, 3584 KiB  
Article
Catalytic Ozonation Combined with Conventional Treatment Technologies for the Recycling of Automobile Service Station Wastewater
by Amir Ikhlaq, Umar Fiaz, Osama Shaheen Rizvi, Asia Akram, Umair Yaqub Qazi, Zafar Masood, Mobeen Irfan, Khaled A. Alawi Al-Sodani, Mamoona Kanwal, Sami M. Ibn Shamsah and Rahat Javaid
Water 2023, 15(1), 171; https://doi.org/10.3390/w15010171 - 31 Dec 2022
Cited by 9 | Viewed by 3111
Abstract
The ample increase in water scarcity and depletion of natural resources due to their overconsumption and the contamination of water sources becomes more challenging day by day. This challenging situation has pushed the scientific community to cope with it by providing alternative solutions. [...] Read more.
The ample increase in water scarcity and depletion of natural resources due to their overconsumption and the contamination of water sources becomes more challenging day by day. This challenging situation has pushed the scientific community to cope with it by providing alternative solutions. Therefore, it is indeed important to conduct a sustainable study on recycling wastewater for a particular purpose. Taking this into account, an effort was made to develop a novel hybrid treatment system that applied both conventional and advanced oxidation treatment processes. In this sustainable study, an integrated system was designed for the effective treatment followed by the recycling of automobile service station wastewater (ASSWW) which comprised sedimentation (sed), catalytic ozonation, adsorption, and filtration. In the current investigation, two catalysts/adsorbents, the granular activated carbon (GAC) and rice husk (RH) were employed individually and in combination for the first time in the studied hybrid process and their performance was compared and evaluated. The obtained results revealed that the hybrid system combination-I (Sed–O3/GAC) was more efficient than combination-II (Sed–O3/RH); the maximum removal efficiency of COD was 100% and 80%, respectively. In addition, the hybrid system combination-III (Sed–O3/RH + GAC) was more economical and efficient than others by employing 35% of each absorbent in the adsorption column. Moreover, this efficient Sed–O3/RH + GAC system has a maximum removal efficiency 99%, 100%, 99%, 100%, (89%, 99%, 100%) and 100% for turbidity, COD, BOD5, fecal coliform, potentially toxic metals (Cd, Pb, As), oil and grease, respectively, at optimized conditions (O3 = 82.5 mg/L; contact time = 18 min and catalyst dose of GAC and RH = 200 g each). Furthermore, the treated water sample complied with the WWF-recommended Irrigation Water Quality Guidelines (IWQGs) for class D. The increase in biodegradability (BOD5/COD ratio) was observed from 0.41 to 0.83. Therefore, the proposed efficacious hybrid system may be employed for the recycling of ASSWW for irrigation purposes. Full article
Show Figures

Figure 1

42 pages, 2998 KiB  
Review
Selected Seeds as Sources of Bioactive Compounds with Diverse Biological Activities
by Natalia Sławińska and Beata Olas
Nutrients 2023, 15(1), 187; https://doi.org/10.3390/nu15010187 - 30 Dec 2022
Cited by 29 | Viewed by 6150
Abstract
Seeds contain a variety of phytochemicals that exhibit a wide range of biological activities. Plant-derived compounds are often investigated for their antioxidant, anti-inflammatory, immunomodulatory, hypoglycemic, anti-hypercholesterolemic, anti-hypertensive, anti-platelet, anti-apoptotic, anti-nociceptive, antibacterial, antiviral, anticancer, hepatoprotective, or neuroprotective properties. In this review, we have described [...] Read more.
Seeds contain a variety of phytochemicals that exhibit a wide range of biological activities. Plant-derived compounds are often investigated for their antioxidant, anti-inflammatory, immunomodulatory, hypoglycemic, anti-hypercholesterolemic, anti-hypertensive, anti-platelet, anti-apoptotic, anti-nociceptive, antibacterial, antiviral, anticancer, hepatoprotective, or neuroprotective properties. In this review, we have described the chemical content and biological activity of seeds from eight selected plant species—blackberry (Rubus fruticosus L.), black raspberry (Rubus coreanus Miq.), grape (Vitis vinifera L.), Moringa oleifera Lam., sea buckthorn (Hippophae rhamnoides L.), Gac (Momordica cochinchinensis Sprenger), hemp (Cannabis sativa L.), and sacha inchi (Plukenetia volubilis L). This review is based on studies identified in electronic databases, including PubMed, ScienceDirect, and SCOPUS. Numerous preclinical, and some clinical studies have found that extracts, fractions, oil, flour, proteins, polysaccharides, or purified chemical compounds isolated from the seeds of these plants display promising, health-promoting effects, and could be utilized in drug development, or to make nutraceuticals and functional foods. Despite that, many of these properties have been studied only in vitro, and it’s unsure if their effects would be relevant in vivo as well, so there is a need for more animal studies and clinical trials that would help determine if they could be applied in disease prevention or treatment. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Graphical abstract

12 pages, 4283 KiB  
Article
Production, Activation and CO2 Uptake Capacity of a Carbonaceous Microporous Material from Palm Oil Residues
by Cristina Moliner, Simona Focacci, Beatrice Antonucci, Aldo Moreno, Simba Biti, Fazlena Hamzah, Alfonso Martinez-Felipe, Elisabetta Arato and Claudia Fernández Martín
Energies 2022, 15(23), 9160; https://doi.org/10.3390/en15239160 - 2 Dec 2022
Cited by 3 | Viewed by 3041
Abstract
While Malaysia produces about half of the world’s palm oil and is the largest producer and exporter worldwide, oil palm industries generate large amounts of lignocellulosic biomass waste as a sub-product with no economic market value other than feedstock for energy valorisation. With [...] Read more.
While Malaysia produces about half of the world’s palm oil and is the largest producer and exporter worldwide, oil palm industries generate large amounts of lignocellulosic biomass waste as a sub-product with no economic market value other than feedstock for energy valorisation. With the aim to increase the sustainability of the sector, in this work we prepare new materials for CO2 capture from palm oil residues (empty fruit bunches and kernels). The biochar is obtained through the carbonisation of the residues and is physically and chemically activated to produce porous materials. The resulting microporous samples have similar properties to other commercial activated carbons, with BET surfaces in the 320–880 m2/g range and pore volumes of 0.1–0.3 cm3·g−1. The CO2 uptake at room temperature for physically activated biochar (AC) was 2.4–3.6 mmolCO2/gAC, whereas the average CO2 uptake for chemically activated biochar was 3.36–3.80 mmolCO2/gAC. The amount of CO2 adsorbed decreased at the highest temperature, as expected due to the exothermic nature of adsorption. These findings confirm the high potential of palm oil tree residues as sustainable materials for CO2 capture. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

23 pages, 4591 KiB  
Article
Stable Carbon Isotopic Composition of Selected Alkylnaphthalenes and Alkylphenanthrenes from the Tarim Oilfields, NW China
by N’Guessan Francois De Sales Konan, Meijun Li, Shengbao Shi, Amoako Kojo, Abdulkareem Toyin, Nancy Pearl Osei Boakye and Tiantian Li
Energies 2022, 15(19), 7145; https://doi.org/10.3390/en15197145 - 28 Sep 2022
Cited by 8 | Viewed by 1708
Abstract
The present study aimed firstly to use a set of crude oil samples and a dataset to provide new evidence for source input contribution in selected aromatic isomers for discrimination of oils from three oilfields from Tarim Basin and identify the key factor [...] Read more.
The present study aimed firstly to use a set of crude oil samples and a dataset to provide new evidence for source input contribution in selected aromatic isomers for discrimination of oils from three oilfields from Tarim Basin and identify the key factor (s) controlling the isotope composition. Thus, the present research showed that the δ13C values of alkylnaphthalenes and alkylphenanthrenes plotted against P/DBT and Ga/C30H ratios is a reliable and convenient tool for discrimination of organic matter variations in different oilfields. More importantly, molecular ratios and different diagram plots revealed that the selected oil samples would be derived from a mixing of indigenous organic matter from the terrestrial (in Kuqa area) and marine (in the cratonic area) depositional environments prior the apparition of the Yakela Faulted Uplift. Thus, Daolaoba, Yakela, and Tahe oils were made up of organic materials from both marine and terrestrial sources. Furthermore, marine organic matter input dominates oils from the Tahe and Yakela, with a minor input from terrestrial sources. The oils from Daolaoba were assigned to be from a mixing of marine and terrestrial material inputs. The controlling factors assessment revealed that biodegradation has an insignificant effect on the set of oils; however, the source input and the thermal maturity together control the isotopic compositions of individual aromatic isomers from these three oilfields. Full article
(This article belongs to the Special Issue Advances in Petroleum Exploration and Production)
Show Figures

Figure 1

18 pages, 2552 KiB  
Article
The Influence of Different Extraction Methods on the Structure, Rheological, Thermal and Functional Properties of Soluble Dietary Fiber from Sanchi (Panax notoginseng) Flower
by Guihun Jiang, Karna Ramachandraiah, Zhaogen Wu and Kashif Ameer
Foods 2022, 11(14), 1995; https://doi.org/10.3390/foods11141995 - 6 Jul 2022
Cited by 26 | Viewed by 2873
Abstract
The influence of different extraction methods, such as acidic (AC), enzymatic (EN), homogenization (H), ultrsonication (U) and alkali (AL), on structure, rheological, thermal and functional properties of soluble dietary fiber (SDF) from Sanchi flower was evaluated in this study. The highest extraction yield [...] Read more.
The influence of different extraction methods, such as acidic (AC), enzymatic (EN), homogenization (H), ultrsonication (U) and alkali (AL), on structure, rheological, thermal and functional properties of soluble dietary fiber (SDF) from Sanchi flower was evaluated in this study. The highest extraction yield (23.14%) was obtained for AL-SDF extract. Glucose (Glc) and galactose (Gal) were found to be the major constituents in Sanchi SDF. Homogenization and Ultrsonication treatments caused significant compaction of pores in the microstructures. FTIR analysis showed increased hydrolysis of pectin and hemicellulose in U, AL and AC-SDF extracts. H-SDF and AC-SDF exhibited similar shear rate change with the rise in shear stress. H-SDF was thermally more stable than other SDF extracts. Among all extraction methods, H-SDF and U-SDF exhibited the highest water holding capacity (WHC), oil-holding capacity (OHC), Bile acid-adsorption capacity (BAC), Cholesterol-adsorption capacity (CAC) and Glucose adsorption capacity (GAC). Thus, Sanchi flower SDF with improved functional properties could be utilized as a functional food ingredient in the development of various food products. Full article
Show Figures

Figure 1

16 pages, 5865 KiB  
Article
Impact of Various Essential Oils and Plant Extracts on the Characterization of the Composite Seaweed Hydrocolloid and Gac Pulp (Momordica cochinchinensis) Edible Film
by Thuy Thi Bich Tran, Boi Ngoc Vu, Md Saifullah, Minh Huu Nguyen, Penta Pristijono, Timothy Kirkman and Quan Van Vuong
Processes 2021, 9(11), 2038; https://doi.org/10.3390/pr9112038 - 14 Nov 2021
Cited by 4 | Viewed by 3363
Abstract
Edible films and coatings have currently received increasing interest because of their potential in food applications. This study examined the effect of incorporated essential oils and natural plant extracts on the characteristics of the composite seaweed hydrocolloid and gac pulp films. Films were [...] Read more.
Edible films and coatings have currently received increasing interest because of their potential in food applications. This study examined the effect of incorporated essential oils and natural plant extracts on the characteristics of the composite seaweed hydrocolloid and gac pulp films. Films were prepared by a casting technique, followed by measurement of physical, optical, barrier, mechanical, and structural properties. The results showed that adding plant oils and extracts significantly affected the physical, optical, mechanical, and structural properties of the composite films. Incorporation of the essential oils resulted in a reduction in moisture content and opacity while increasing values for Hue angle and elongation at break of the composite films. Besides, incorporation of the plant extracts showed increases in thickness, opacity, ΔE, Chroma, and elongation at the break, while there is a decrease in the Hue angle values of the composite films. In conclusion, incorporating plant essential oils and extracts into composite seaweed hydrocolloid and gac pulp films can enhance film properties, which can potentially be applied in food products. Full article
Show Figures

Figure 1

Back to TopTop