Wavelet Analysis of the Effect of Injection Strategies on Cycle to Cycle Variation GDI Optical Engine under Clean and Fouled Injector
Abstract
:1. Introduction
2. Experimental Setup
Data Acquisition
3. Wavelet Analysis and Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Joshi, A. Review of Vehicle Engine Efficiency and Emissions. SAE Int. J. Engines 2018, 11, 1307–1330. [Google Scholar]
- Stone, R. Introduction to Internal Combustion Engines; Springer: Berlin, Germany, 1999; Volume 3. [Google Scholar]
- Zhen, X.; Wang, Y.; Xu, S.; Zhu, Y.; Tao, C.; Xu, T.; Song, M. The engine knock analysis—An overview. Appl. Energy 2012, 92, 628–636. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Reitz, R.D. Knocking combustion in spark-ignition engines. Prog. Energy Combust. Sci. Technol. 2017, 61, 78–112. [Google Scholar] [CrossRef]
- Kalghatgi, G. Developments in internal combustion engines and implications for combustion science and future transport fuels. Proc. Combust. Inst. 2015, 35, 101–115. [Google Scholar] [CrossRef]
- Kasseris, E.; Heywood, J. Charge cooling effects on knock limits in SI DI engines using gasoline/ethanol blends: Part 2-effective octane numbers. SAE Int. J. Fuels Lubr. 2012, 5, 844–854. [Google Scholar] [CrossRef]
- Wei, H.; Zhu, T.; Shu, G.; Tan, L.; Wang, Y. Gasoline engine exhaust gas recirculation–A review. Appl. Energy 2012, 99, 534–544. [Google Scholar] [CrossRef]
- Heywood, J.B. Internal Combustion Engine Fundamentals; Mcgraw-Hill: New York, NY, USA, 1988; Volume 930. [Google Scholar]
- Li, T.; Gao, Y.; Wang, J.; Chen, Z. The Miller cycle effects on improvement of fuel economy in a highly boosted, high compression ratio, direct-injection gasoline engine: EIVC vs. LIVC. Energy Convers. Energy Convers. Manag. 2014, 79, 59–65. [Google Scholar] [CrossRef]
- Kyrtatos, P.; Brückner, C.; Boulouchos, K. Cycle-to-cycle variations in diesel engines. Appl. Energy 2016, 171, 120–132. [Google Scholar] [CrossRef]
- Maurya, R.K.; Agarwal, A.K. Experimental investigation on the effect of intake air temperature and air–fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters. Appl. Energy 2011, 88, 1153–1163. [Google Scholar] [CrossRef]
- Badawy, T.; Bao, X.; Xu, H. Impact of spark plug gap on flame kernel propagation and engine performance. Appl. Energy 2017, 191, 311–327. [Google Scholar] [CrossRef]
- Willman, C.; Stone, R.; Davy, M.; Williams, B.A.O.; Ewart, P.; Shen, L.; Hung, D.L.S.; Liu, M.; Camm, J. Cycle-to-Cycle Variation Analysis of Two-Colour PLIF Temperature Measurements Calibrated with Laser Induced Grating Spectroscopy in a Firing GDI Engine. SAE Int. J. Engines 2019, 1, 0722. [Google Scholar]
- Pischinger, S.; Günther, M.; Budak, O. Abnormal combustion phenomena with different fuels in a spark ignition engine with direct fuel injection. Combust. Flame 2017, 175, 123–137. [Google Scholar] [CrossRef]
- Schulz, C.; Dreizler, A.; Ebert, V.; Wolfrum, J. Combustion diagnostics. In Springer Handbook of Experimental Fluid Mechanics. Springer Handbooks; Springer: Berlin, Germany, 2017. [Google Scholar]
- d’Adamo, A.; Breda, S.; Fontanesi, S.; Cantore, G. LES modelling of spark-ignition cycle-to-cycle variability on a highly downsized DISI engine. Sae Int. J. Engines 2015, 8, 2029–2041. [Google Scholar] [CrossRef]
- Sen, A.K.; Zheng, J.; Huang, Z. Dynamics of cycle-to-cycle variations in a natural gas direct-injection spark-ignition engine. Appl. Energy 2011, 88, 2324–2334. [Google Scholar] [CrossRef]
- Bode, J.; Schorr, J.; Krüger, C.; Dreizler, A.; Böhm, B. Influence of three-dimensional in-cylinder flows on cycle-to-cycle variations in a fired stratified DISI engine measured by time-resolved dual-plane PIV. Proc. Combust. Inst. 2017, 36, 3477–3485. [Google Scholar] [CrossRef]
- Gong, C.; Huang, K.; Chen, Y.; Jia, J.; Su, Y.; Liu, X. Cycle-by-cycle combustion variation in a DISI engine fueled with methanol. Fuel 2011, 90, 2817–2819. [Google Scholar] [CrossRef]
- Pan, M.; Shu, G.; Wei, H.; Zhu, T.; Liang, Y.; Liu, C. Effects of EGR, compression ratio and boost pressure on cyclic variation of PFI gasoline engine at WOT operation. Appl. Therm. Eng. 2014, 64, 491–498. [Google Scholar] [CrossRef]
- Sen, A.K.; Litak, G.; Yao, B.F.; Li, G.X. Analysis of pressure fluctuations in a natural gas engine under lean burn conditions. Appl. Therm. Eng. 2010, 30, 776–779. [Google Scholar] [CrossRef][Green Version]
- Ozdor, N.; Dulger, M.; Sher, E. Cyclic variability in spark ignition engines a literature survey. SAE Trans. 1994, 103, 1514–1552. [Google Scholar]
- Matekunas, F.A. Modes and measures of cyclic combustion variability. Sae Trans. 1983, 92, 1139–1156. [Google Scholar]
- Kaleli, A.; Ceviz, M.A.; Erenturk, K. Controlling spark timing for consecutive cycles to reduce the cyclic variations of SI engines. Appl. Therm. Eng. 2015, 87, 624–632. [Google Scholar] [CrossRef]
- Maurya, R.K.; Agarwal, A.K. Experimental investigation of cyclic variations in HCCI combustion parameters for gasoline like fuels using statistical methods. Appl. Energy 2013, 111, 310–323. [Google Scholar] [CrossRef]
- Foakes, A.; Pollard, D. Investigation of a chaotic mechanism for cycle-to-cycle variations. Combust. Sci. Technol. 1993, 90, 281–287. [Google Scholar] [CrossRef]
- Maurya, R.K.; Nekkanti, A. Combustion instability analysis using wavelets in conventional diesel engine. In Mathematical Concepts and Applications in Mechanical Engineering and Mechatronics; IGI Global: Hershey, PA, USA, 2017; pp. 390–413. [Google Scholar] [CrossRef]
- Saxena, M.R.; Maurya, R.K. Effect of Diesel Injection Timing on Peak Pressure Rise Rate and Combustion Stability in RCCI Engine. SAE Int. J. Engines 2018, 1, 1731. [Google Scholar] [CrossRef]
- Sen, A.K.; Litak, G.; Edwards, K.D.; Finney, C.E.; Daw, C.S.; Wagner, R.M. Characteristics of cyclic heat release variability in the transition from spark ignition to HCCI in a gasoline engine. Appl. Energy 2011, 88, 1649–1655. [Google Scholar] [CrossRef]
- Maurya, R.K.; Akhil, N. Experimental Investigation on Effect of Compression Ratio, Injection Pressure and Engine Load on Cyclic Variations in Diesel Engine Using Wavelets. SAE Int. J. Engines 2018, 1, 5007. [Google Scholar] [CrossRef]
- Liu, Z.; Chiew, K.; Zhang, L.; Zhang, B.; He, Q.; Zimmermann, R. Rare category exploration via wavelet analysis: Theory and applications. Expert Syst. Appl. 2016, 63, 173–186. [Google Scholar] [CrossRef]
- Canakci, M.; Ozsezen, A.N.; Arcaklioglu, E.; Erdil, A. Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil. Expert Syst. Appl. 2009, 36, 9268–9280. [Google Scholar] [CrossRef]
- Wu, J.-D.; Liu, C.-H. Investigation of engine fault diagnosis using discrete wavelet transform and neural network. Expert Syst. Appl. 2008, 35, 1200–1213. [Google Scholar] [CrossRef]
- Wu, J.-D.; Liu, C.-H. An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network. Expert Syst. Appl. 2009, 36, 4278–4286. [Google Scholar] [CrossRef]
- Galloni, E. Analyses about parameters that affect cyclic variation in a spark ignition engine. Appl. Therm. Eng. 2009, 29, 1131–1137. [Google Scholar] [CrossRef][Green Version]
- Wang, J.; Huang, Z.; Miao, H.; Wang, X.; Jiang, D. Study of cyclic variations of direct-injection combustion fueled with natural gas–hydrogen blends using a constant volume vessel. Int. J. Hydrog. Energy 2008, 33, 7580–7591. [Google Scholar] [CrossRef]
- Aleiferis, P.; Hardalupas, Y.; Taylor, A.; Ishii, K.; Urata, Y. Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine. Combust. Flame 2004, 136, 72–90. [Google Scholar] [CrossRef]
- Ceviz, M.A.; Sen, A.K.; Küleri, A.K.; Öner, I.V. Engine performance, exhaust emissions, and cyclic variations in a lean-burn SI engine fueled by gasoline–hydrogen blends. Appl. Therm. Eng. 2012, 36, 314–324. [Google Scholar] [CrossRef]
- Santoso, W.B.; Rosli, A.; Bakar, R.; Ariyono, S.; Cholis, N. Study of cyclic variability in diesel-hydrogen dual fuel engine combustion. Int. J. Mech. Mechatron. Eng. IJMME-IJENS 2012, 12, 52–56. [Google Scholar]
- Barboza, A.; Sudhir, C.; Sharma, Y.N. Performance, Emissions & Cyclic Combustion Studies of CI engine using Jatropha B20 Fuel. Int. J. Earth Sci. Eng. 2012, 5, 1073–1077. [Google Scholar]
- Barboza, A.; Sharma, N.Y.; Sudhir, C. Cyclic combustion studies of a CI engine operating on jatropha B20 fuel. In Proceedings of the 2nd International Conference on Mechanical and Electrical Technology (ICMET), Singapore, 10–12 September 2010; pp. 43–46. [Google Scholar]
- Law, D.; Kemp, D.; Allen, J.; Kirkpatrick, G.; Copland, T. Controlled Combustion in an IC-Engine with a Fully Variable Valve Train. Sae Trans. 2001, 110, 192–198. [Google Scholar]
- Ikoma, T.; Abe, S.; Sonoda, Y.; Suzuki, H.; Suzuki, Y.; Basaki, M. Development of V-6 3.5-liter Engine Adopting New Direct Injection System. SAE Int. J. Engines 2006, 1, 1259. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Ali, O.M.; Mamat, R.; Abdullah, N.R.; Abdullah, A.A. Analysis of blended fuel properties and engine performance with palm biodiesel–diesel blended fuel. Renew. Energy 2016, 86, 59–67. [Google Scholar] [CrossRef]
- Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 1990, 36, 961–1005. [Google Scholar] [CrossRef]
- Ali, O.M.; Mamat, R.; Masjuki, H.H.; Abdullah, A.A. Analysis of blended fuel properties and cycle-to-cycle variation in a diesel engine with a diethyl ether additive. Energy Convers. Manag. 2016, 108, 511–519. [Google Scholar] [CrossRef]
- Fujikawa, T.; Nomura, Y.; Hattori, Y.; Kobayashi, T.; Kanda, M. Analysis of cycle-by-cycle variation in a direct injection gasoline engine using a laser-induced fluorescence technique. Int. J. Engine Res. 2003, 4, 143–153. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, L.; Jiang, D.; Ren, Y.; Liu, B.; Zeng, K.; Wang, Q. Study on cycle-by-cycle variations of combustion in a natural-gas direct-injection engine. Part D J. Automob. Eng. 2008, 222, 1657–1667. [Google Scholar] [CrossRef]
Description | Value |
---|---|
Bore/mm | 75 |
Stroke/mm | 89.2 |
Number of cylinders | 1 |
Displacement/L | 0.394 |
Combustion chamber arrangement | 4-valve, pent-roof |
Cooling | Water-cool |
Compression ratio | 11.2 |
Conditions | Injection Pressure [MPa] | Injection Duration [μs] | Injection Timing [ATDC] | Injector Condition |
---|---|---|---|---|
1 | 10 | 1500 | 240 | Clean |
2 | 10 | 1500 | 240 | Fouled |
3 | 10 | 1720 | 240 | Clean |
4 | 10 | 1800 | 240 | Fouled |
5 | 20 | 1050 | 120 | Clean |
6 | 20 | 1050 | 120 | Fouled |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awad, O.I.; Zhang, Z.; Kamil, M.; Ma, X.; Ali, O.M.; Shuai, S. Wavelet Analysis of the Effect of Injection Strategies on Cycle to Cycle Variation GDI Optical Engine under Clean and Fouled Injector. Processes 2019, 7, 817. https://doi.org/10.3390/pr7110817
Awad OI, Zhang Z, Kamil M, Ma X, Ali OM, Shuai S. Wavelet Analysis of the Effect of Injection Strategies on Cycle to Cycle Variation GDI Optical Engine under Clean and Fouled Injector. Processes. 2019; 7(11):817. https://doi.org/10.3390/pr7110817
Chicago/Turabian StyleAwad, Omar I., Zhou Zhang, Mohammed Kamil, Xiao Ma, Obed Majeed Ali, and Shijin Shuai. 2019. "Wavelet Analysis of the Effect of Injection Strategies on Cycle to Cycle Variation GDI Optical Engine under Clean and Fouled Injector" Processes 7, no. 11: 817. https://doi.org/10.3390/pr7110817