# Impact of Filled Materials on the Heating Uniformity and Safety of Microwave Heating Solid Stack Materials

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### 2.1. Multiphysics Simulation

#### 2.1.1. Geometry

#### 2.1.2. Governing Equations

_{e}is the electric charge density. Equation (1) in the time harmonic field can be then written as the Helmholtz equation [38]

_{r}is the relative permeability, k

_{0}is the wave number in free space, ε

_{r}is the relative permittivity, ε

_{0}is the permittivity of vacuum, ω is the angular frequency, σ is the electrical conductivity and μ

_{0}is the permeability of vacuum.

_{e}of the processing materials can be gained from the computed electric field by the following equation [39,40]

_{p}is the material heat capacity under atmospheric pressure, T is the temperature, Q is the heat source and k is the thermal conductivity.

#### 2.1.3. Input Parameters and Boundary Conditions

#### 2.1.4. Mesh Size

#### 2.1.5. Simulation Process

#### 2.2. Experimental Setup

#### 2.2.1. Experiment System

#### 2.2.2. Experimental Procedures

_{e}, which is defined as

_{c}is the cut-off frequency of the BJ22 waveguide, f is the frequency of the microwave. The corresponding modification of the experimental length of the BJ22 waveguide is realized by the slide short. A simple test system, shown in Figure 5, is performed to adjust the position of the slide short. By combining the S

_{11}gained from the vector network analyzer (N5230A, Agilent Technologies Inc., Santa Clara, CA, USA), the position of the slide short is confirmed to match the simulation.

## 3. Results and Discussion

#### 3.1. Experiment Validation

#### 3.2. Effect of Introducing Fluid Materials with Different Dielectric Properties

^{3}in order to get a higher temperature rise, and the initial temperature is set as 20 degrees centigrade. The whole heating process lasts 120 s. In the computation results, the reflection parameters S

_{11}of the heating system, the average body temperature $\overline{T}$ of the solids, the coefficient of variation (COV) value of the solids’ final temperature and the maximum modulus value of the electric field |$\overrightarrow{\mathrm{E}}$|

_{max}in the whole processing materials are analyzed. The COV of temperature can be expressed by

_{11}, $\overline{T}$, COV and |$\overrightarrow{\mathrm{E}}$|

_{max}along with ε′ are shown in Figure 8. It is worthy to note that the reflection parameter is calculated by the rate of reflection power and incident power. Computation results of the system are firstly characterized by the reflection coefficient S

_{11}, namely the power absorbed by the processing materials. As shown in Figure 8a, the increasing of ε′ has obvious but nonlinear effects on the S

_{11}and will thus decide the corresponding $\overline{T}$ through its impact on the microwave feeding condition.

_{max}as it changes from 478,870 V/m to 19,982 V/m, which is reduced by about 24 times. Out of this range, the influence of the increasing ε′ stays weak. The differences could be further described by the mean square error as it is 191,152.0 V/m in the former range while it is 3109.9 V/m in the latter, which is reduced by about 60.5 times. Compared with normal heating solids with air surroundings, namely ε′ = 1, the introduction of fluid materials with proper ε′ shows a more convenient way to achieve uniform and safe microwave heating.

_{11}and thus bring more efficient heating. While the S

_{11}and $\overline{T}$ almost stay the same out of this range.

_{max}, as the increasing of ε″ from 0.1 to 0.9 has reduced the |$\overrightarrow{\mathrm{E}}$|

_{max}by about 34% to 55%. However, higher ε″ will cause worse heating uniformity as shown in Figure 9b.

_{max}in simulation models is always gained in the interface between the solids and the fluid materials. Combined with the cure trend shown Figure 8b and the relative permittivity of the solids shown in Table 1, it is deduced that the maximum modulus value of the electric field |$\overrightarrow{\mathrm{E}}$|

_{max}stays huge when the ε′ of fluid materials is much different with the one of solids. A comparison of the variation of |$\overrightarrow{\mathrm{E}}$|

_{max}on fluid materials’ ε′ with solids of different relative permittivity is performed in Figure 10 and the simulation results have agreed with our deduction.

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Demirskyi, D.; Agrawal, D.; Ragulya, A. Neck formation between copper spherical particles under single-mode and multimode microwave sintering. Mater. Sci. Eng. A
**2010**, 527, 2142–2145. [Google Scholar] [CrossRef] - Ozkoc, S.O.; Sumnu, G.; Sahin, S. Recent Developments in Microwave Heating. In Emerging Technologies for Food Processing, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Chapter 20; pp. 361–383. [Google Scholar]
- Ferrera-Lorenzo, N.; Fuente, E.; Suárez-Ruiz, I.; Ruiz, B. KOH activated carbon from conventional and microwave heating system of a macroalgae waste from the Agar–Agar industry. Fuel Process. Technol.
**2014**, 121, 25–31. [Google Scholar] [CrossRef] - Monteiro, R.L.; Carciofi, B.A.M.; Marsaioli, A., Jr.; Laurindo, J.B. How to make a microwave vacuum dryer with turntable. J. Food Eng.
**2015**, 166, 276–284. [Google Scholar] [CrossRef] - Wu, Y.; Hong, T.; Tang, Z.; Zhang, C. Dynamic Model for a Uniform Microwave-Assisted Continuous Flow Process of Ethyl Acetate Production. Entropy
**2018**, 20, 241. [Google Scholar] [CrossRef] - Adam, D. Microwave chemistry: Out of the kitchen. Nature
**2003**, 421, 571–572. [Google Scholar] [CrossRef] [PubMed] - Vadivambal, R.; Jayas, D.S. Non-uniform temperature distribution during microwave heating of food materials—A review. Food Bioprocess Technol.
**2010**, 3, 161–171. [Google Scholar] [CrossRef] - Kubota, M.; Hanada, T.; Yabe, S.; Kuchar, D.; Matsuda, H. Water desorption behavior of desiccant rotor under microwave irradiation. Appl. Therm. Eng.
**2011**, 31, 1482–1486. [Google Scholar] [CrossRef] - Lopez-Avila, V.; Benedicto, J.; Bauer, K.M. Stability of organochlorine and organophosphorus pesticides when extracted from solid matrixes with microwave energy. J. AOAC Int.
**1998**, 81, 1224–1232. [Google Scholar] - Sebera, V.; Nasswettrová, A.; Nikl, K. Finite element analysis of mode stirrer impact on electric field uniformity in a microwave applicator. Dry. Technol.
**2012**, 30, 1388–1396. [Google Scholar] [CrossRef] - Hong, T.; Tang, Z.; Zhu, H. Anomalous dielectric relaxation with linear reaction dynamics in space-dependent force fields. J. Chem. Phys.
**2016**, 145, 244105. [Google Scholar] [CrossRef] [PubMed] - Stadler, A.; Yousefi, B.H.; Dallinger, D.; Walla, P.; Van der Eycken, E.; Kaval, N.; Kappe, C.O. Scalability of microwave-assisted organic synthesis. From single-mode to multimode parallel batch reactors. Org. Process Res. Dev.
**2003**, 7, 707–716. [Google Scholar] [CrossRef] - Wu, X. Experimental and Theoretical Study of Microwave Heating of Thermal Runaway Materials. Ph.D. Thesis, Virginia Tech, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 18 December 2002. [Google Scholar]
- Wang, W.; Liu, Z.; Sun, J.; Ma, Q.; Ma, C.; Zhang, Y. Experimental study on the heating effects of microwave discharge caused by metals. AIChE J.
**2012**, 58, 3852–3857. [Google Scholar] [CrossRef] - Sun, J.; Wang, W.; Zhao, C.; Zhang, Y.; Ma, C.; Yue, Q. Study on the coupled effect of wave absorption and metal discharge generation under microwave irradiation. Ind. Eng. Chem. Res.
**2014**, 53, 2042–2051. [Google Scholar] [CrossRef] - Sun, J.; Wang, W.; Liu, Z.; Ma, C. Recycling of waste printed circuit boards by microwave-induced pyrolysis and featured mechanical processing. Ind. Eng. Chem. Res.
**2011**, 50, 11763–11769. [Google Scholar] [CrossRef] - Sun, J.; Wang, W.; Liu, Z.; Ma, Q.; Zhao, C.; Ma, C. Kinetic study of the pyrolysis of waste printed circuit boards subject to conventional and microwave heating. Energies
**2012**, 5, 3295–3306. [Google Scholar] [CrossRef] - Li, Z.Y.; Wang, R.F.; Kudra, T. Uniformity issue in microwave drying. Dry. Technol.
**2011**, 29, 652–660. [Google Scholar] [CrossRef] - Campañone, L.A.; Bava, J.A.; Mascheroni, R.H. Modeling and process simulation of controlled microwave heating of foods by using of the resonance phenomenon. Appl. Therm. Eng.
**2014**, 73, 914–923. [Google Scholar] [CrossRef] - Luan, D.; Tang, J.; Pedrow, P.D.; Liu, F.; Tang, Z. Analysis of electric field distribution within a microwave assisted thermal sterilization (MATS) system by computer simulation. J. Food Eng.
**2016**, 188, 87–97. [Google Scholar] [CrossRef] [Green Version] - Lin, B.Q.; Li, H.; Dai, H.M.; Zhu, C.J.; Yao, H. Three-dimensional simulation of microwave heating coal sample with varying parameters. Appl. Therm. Eng.
**2016**, 93, 1145–1154. [Google Scholar] - Bae, S.H.; Jeong, M.G.; Kim, J.H.; Lee, W.S. A continuous power-controlled microwave belt drier improving heating uniformity. IEEE Microw. Wirel. Compon. Lett.
**2017**, 27, 527–529. [Google Scholar] [CrossRef] - Plaza-González, P.; Monzó-Cabrera, J.; Catalá-Civera, J.M.; Sánchez-Hernández, D. New approach for the prediction of the electric field distribution in multimode microwave-heating applicators with mode stirrers. IEEE Trans. Magn.
**2004**, 40, 1672–1678. [Google Scholar] [CrossRef] - Plaza-González, P.; Monzó-Cabrera, J.; Catalá-Civera, J.M.; Sánchez-Hernández, D. Effect of mode-stirrer configurations on dielectric heating performance in multimode microwave applicators. IEEE Trans. Microw. Theory Tech.
**2005**, 53, 1699–1706. [Google Scholar] [CrossRef] [Green Version] - Wang, R.; Huo, H.; Dou, R.; Li, Z.; Mujumdar, A.S. Effect of the inside placement of electrically conductive beads on electric field uniformity in a microwave applicator. Dry. Technol.
**2014**, 32, 1997–2004. [Google Scholar] [CrossRef] - Meng, Q.; Lan, J.; Hong, T.; Zhu, H. Effect of the rotating metal patch on microwave heating uniformity. J. Microw. Power Electromagn. Energy
**2018**, 52, 94–108. [Google Scholar] [CrossRef] - Zhou, R.; Yang, X.; Sun, D.; Jia, G. Multiple tube structure for heating uniformity and efficiency optimization of microwave ovens. Eur. Phys. J. Appl. Phys.
**2015**, 69, 20201. [Google Scholar] [CrossRef] - Raaholt, B.W.; Isaksson, S.; Hamberg, L.; Fhager, A.; Hamnerius, Y. Continuous tubular microwave heating of homogeneous foods: evaluation of heating uniformity. J. Microw. Power Electromagn. Energy
**2016**, 50, 43–65. [Google Scholar] [CrossRef] - Ryynänen, S.; Ohlsson, T. Microwave heating uniformity of ready meals as affected by placement, composition, and geometry. J. Food Sci.
**1996**, 61, 620–624. [Google Scholar] [CrossRef] - Geedipalli, S.S.R.; Rakesh, V.; Datta, A.K. Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. J. Food Eng.
**2007**, 82, 359–368. [Google Scholar] [CrossRef] - Salema, A.A.; Afzal, M.T. Numerical simulation of heating behaviour in biomass bed and pellets under multimode microwave system. Int. J. Therm. Sci.
**2015**, 91, 12–24. [Google Scholar] [CrossRef] - Soto-Reyes, N.; Temis-Pérez, A.L.; López-Malo, A.; Rojas-Laguna, R.; Sosa-Morales, M.E. Effects of shape and size of agar gels on heating uniformity during pulsed microwave treatment. J. Food Sci.
**2015**, 80, E1021–E1025. [Google Scholar] [CrossRef] [PubMed] - Chen, W.; Gutmann, B.; Kappe, C.O. Characterization of Microwave-Induced Electric Discharge Phenomena in Metal–Solvent Mixtures. ChemistryOpen
**2012**, 1, 39–48. [Google Scholar] [CrossRef] [PubMed] - Hu, C.; Xi, X.; Huang, Z.; Zhan, Z. Simple Analysis of Mechanism of Microware Sintering of Metal Powder. Mater. Rev.
**2008**, S2, 329–332. (In Chinese) [Google Scholar] - Whittaker, A.G.; Mingos, D.M.P. Arcing and other microwave characteristics of metal powders in liquid systems. J. Chem. Soc. Dalton Trans.
**2000**, 9, 1521–1526. [Google Scholar] [CrossRef] - Lide, D.R. CRC Handbook of Chemistry and Physic, 90th ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 15–46. [Google Scholar]
- Perreux, L.; Loupy, A.; Petit, A. Nonthermal effects of microwaves in organic synthesis. In Microwaves in Organic Synthesis, 3rd ed.; De la Hoz, A., Loupy, A., Eds.; Wiley—VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; Chapter 4; pp. 127–207. [Google Scholar]
- Torres, F.; Jecko, B. Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature-dependent media. IEEE Trans. Microw. Theory
**1997**, 45, 108–117. [Google Scholar] [CrossRef] - Goldblith, S.A.; Wang, D.I. Effect of microwaves on Escherichia coli and Bacillus subtilis. Appl. Microbiol.
**1967**, 15, 1371–1375. [Google Scholar] [PubMed] - Huang, K.M.; Liao, Y.H. Transient power loss density of electromagnetic pulse in debye media. IEEE Trans. Microw. Theory
**2015**, 63, 135–140. [Google Scholar] [CrossRef] - Pandit, R.B.; Prasad, S. Finite element analysis of microwave heating of potato—Transient temperature profiles. J. Food Eng.
**2003**, 60, 193–202. [Google Scholar] [CrossRef] - Pitchai, K.; Birla, S.L.; Subbiah, J.; Jones, D.; Thippareddi, H. Coupled electromagnetic and heat transfer model for microwave heating in domestic ovens. J. Food Eng.
**2012**, 112, 100–111. [Google Scholar] [CrossRef] [Green Version] - Pitchai, K.; Chen, J.; Birla, S.; Gonzalez, R.; Jones, D.; Subbiah, J. A microwave heat transfer model for a rotating multi-component meal in a domestic oven: development and validation. J. Food Eng.
**2014**, 128, 60–71. [Google Scholar] [CrossRef] - Zhu, H.; Ye, J.; Gulati, T.; Yang, Y.; Liao, Y.; Yang, Y.; Huang, K. Dynamic analysis of continuous-flow microwave reactor with a screw propeller. Appl. Therm. Eng.
**2017**, 123, 1456–1461. [Google Scholar] [CrossRef] - Grant, E.; Halstead, B.J. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev.
**1998**, 27, 213–224. [Google Scholar] - Kuang, J.; Cao, W. Silicon carbide whiskers: Preparation and high dielectric permittivity. J. Am. Ceram. Soc.
**2013**, 96, 2877–2880. [Google Scholar] [CrossRef] - Ye, J.; Hong, T.; Wu, Y.; Wu, L.; Liao, Y.; Zhu, H.; Yang, Y.; Huang, K. Model stirrer based on a multi-material turntable for microwave processing materials. Materials
**2017**, 10, 95. [Google Scholar] [CrossRef] [PubMed] - Böttcher, C.J.F.; van Belle, O.C.; Bordewijk, P.; Rip, A.; Yue, D.D. Theory of electric polarization. J. Electrochem. Soc.
**1974**, 121, 211C. [Google Scholar] [CrossRef] - QuickWave EM simulator, QWED s.c., Zwyciezcow 34/2, 03-938 Warsaw, Poland. Available online: http://www.qwed.com.pl/ (accessed on 6 November 2018).
- Pathak, S.K.; Liu, F.; Tang, J. Finite difference time domain (FDTD) characterization of a single mode applicator. J. Microw. Power Electromagn. Energy
**2003**, 38, 37–48. [Google Scholar] [CrossRef]

**Figure 2.**Normalized power absorption (NPA) variation of heating computations with different mesh sizes.

**Figure 6.**Structure of the silicon carbide spheres: (

**a**) Experimental structure; (

**b**) simulation structure.

**Figure 7.**Temperature variation comparisons between the experiment and simulation: (

**a**) Temperature of point (5,0,0) with water as the fluid material; (

**b**) temperature of point (−5,0,0) with water as the fluid material; (

**c**) temperature of point (5,0,0) with glycerol as the fluid material; (

**d**) temperature of point (−5,0,0) with glycerol as the fluid material.

**Figure 8.**Influence of ε′ on the final parameters at time 120 s: (

**a**) Variations of the S

_{11}and the $\overline{T}$; (

**b**) variations of the coefficient of variation (COV) and $\overline{T}$; (

**c**) variations of the |$\overrightarrow{\mathrm{E}}$ |

_{max}.

**Figure 9.**Influence of ε″ on the final parameters with ε′ = 85 at time 120 s: (

**a**) Variations of the S

_{11}and the $\overline{T}$; (

**b**) variations of the COV and the |$\overrightarrow{\mathrm{E}}$|

_{max}.

$\mathbf{\epsilon}\prime \text{}$ | $\mathbf{tan}\mathbf{\delta}\text{}$ | μ_{r} | σ (S/m) | k (W/m·K) | ρ (kg/m^{3}) | C_{p} (J/kg·K) | |
---|---|---|---|---|---|---|---|

Air | 1 | 0 | 1 | 0 | 2.524 × 10^{−}^{2} | 1.205 | 1005 |

Silicon carbide | 12.3 | 0.12 | 1 | 0 | 450 | 3200 | 1600 |

Quartz | 4.2 | 0 | 1 | 1 × 10^{−14} | 10 | 2600 | 260 |

Water | 79.4 | 0.12 | 1 | 5.5 × 10^{−6} | 0.59 | 1000 | 4187 |

Glycerol | 6.33 | 0.18 | 1 | 6.4 × 10^{−8} | 0.27 | 1264 | 2735 |

${\mathbf{\epsilon}}^{\prime}$ | $\mathbf{tan}\mathbf{\delta}$ | ${\mathit{S}}_{11}(\mathbf{dB})$ | $\overline{\mathit{T}}(\xb0\mathbf{C})$ | $\mathbf{COV}$ | ${\left|\overrightarrow{\mathbf{E}}\right|}_{\mathit{m}\mathit{a}\mathit{x}}(\mathbf{V}/\mathbf{m})$ |
---|---|---|---|---|---|

15 | 0 | −3.5994 | 80.48 | 0.160856772 | 12,105 |

0.1 | −5.0345 | 93.66 | 0.145737029 | 10,183 | |

0.5 | −7.3592 | 107.61 | 0.202485855 | 4558.9 | |

0.9 | −7.6533 | 108.9 | 0.229677999 | 4136.1 | |

50 | 0 | −2.0435 | 60.28 | 0.154154613 | 7525.2 |

0.1 | −3.8066 | 82.65 | 0.122400265 | 6047.8 | |

0.5 | −5.9392 | 99.98 | 0.170629879 | 4484.6 | |

0.9 | −5.8709 | 99.54 | 0.193053244 | 4136.1 | |

85 | 0 | −2.8677 | 71.88 | 0.073144433 | 10,796 |

0.1 | −4.0862 | 85.44 | 0.088155288 | 8663.5 | |

0.5 | −5.0389 | 93.68 | 0.176975505 | 6465.7 | |

0.9 | −4.9559 | 93.03 | 0.198345404 | 5898 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, J.; Hong, T.; Xie, T.; Yang, F.; Hu, Y.; Zhu, H.
Impact of Filled Materials on the Heating Uniformity and Safety of Microwave Heating Solid Stack Materials. *Processes* **2018**, *6*, 220.
https://doi.org/10.3390/pr6110220

**AMA Style**

Wang J, Hong T, Xie T, Yang F, Hu Y, Zhu H.
Impact of Filled Materials on the Heating Uniformity and Safety of Microwave Heating Solid Stack Materials. *Processes*. 2018; 6(11):220.
https://doi.org/10.3390/pr6110220

**Chicago/Turabian Style**

Wang, Jing, Tao Hong, Tian Xie, Fan Yang, Yusong Hu, and Huacheng Zhu.
2018. "Impact of Filled Materials on the Heating Uniformity and Safety of Microwave Heating Solid Stack Materials" *Processes* 6, no. 11: 220.
https://doi.org/10.3390/pr6110220