Kinetic Modelling for Flavonoid Recovery from Red Grape (Vitis vinifera) Pomace with Aqueous Lactic Acid
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Chemicals
2.2. Red Grape Pomace
2.3. Extraction Procedure
2.4. Total Flavonoid Yield (YTFn)
2.5. Kinetics and Statistical Analyses
3. Results and Discussion
3.1. Kinetics of TFn Extraction
T (°C) | Kinetic Parameters | ||
---|---|---|---|
k (g·mg−1·min−1) × 10−3 | h (mg·g−1·min−1) | YTFn(s) (mg·RtE·g−1·dpw) | |
30 | 1.51 | 0.22 | 11.98 |
40 | 3.35 | 0.59 | 13.27 |
60 | 2.62 | 0.35 | 11.50 |
3.2. Experimental Fitting (Model Validation)
Run | t (min) | T (°C) | YTFn (mg·RtE·g−1·dpw) | |
---|---|---|---|---|
Observed | Predicted | |||
1 | 20 | 30 | 2.64 | 5.10 |
2 | 160 | 30 | 9.63 | 10.35 |
3 | 320 | 30 | 9.50 | 11.17 |
4 | 20 | 40 | 6.34 | 5.87 |
5 | 160 | 40 | 11.81 | 11.61 |
6 | 320 | 40 | 11.60 | 12.48 |
7 | 20 | 60 | 4.19 | 2.99 |
8 | 160 | 60 | 10.07 | 8.67 |
9 | 320 | 60 | 9.70 | 10.03 |
3.3. Polyphenolic Composition
Peak # | Rt (min) | UV-Vis | [M + H]+ | Other Ions | Tentative Identity |
---|---|---|---|---|---|
1 | 9.69 | 280 | 291 | - | (Epi)catechin |
2 | 13.80 | 280 | 291 | - | (Epi)catechin |
3 | 21.64 | 256, 362 | 479 | 303 | Quercetin 3-O-glucuronide |
4 | 21.97 | 330, 506 | 595 | - | Cyanidin 3-O-p-coumaroylglucoside |
5 | 25.22 | 254, 360 | 464 | 303 | Quercetin 3-O-glucoside or galactoside |
6 | 40.99 | 240, 272 | 579 | 301 | (Epi)catechin-(epi)catechin dimer |
7 | 42.31 | 240, 272 | 579 | 301 | (Epi)catechin-(epi)catechin dimer |
4. Conclusions
Author Contributions
Nomenclature
CTFn | total flavonoid concentration (mg·RtE·L−1) |
dpw | dry pomace weight (g) |
h | initial extraction rate (mg·g−1·min−1) |
k | extraction rate constant (g·mg−1·min−1) |
T | temperature (°C) |
t | time (min) |
YTFn | extraction yield in total flavonoids (mg·RtE·g−1·dpw) |
YTFn(s) | extraction yield in total flavonoids at saturation (mg·RtE·g−1·dpw) |
Abbreviations
LA | lactic acid |
RGP | red grape pomace |
RtE | rutin equivalents |
Conflicts of Interest
References
- Devesa-Rey, R.; Vecino, X.; Varela-Alende, J.; Barral, M.; Cruz, J.; Moldes, A. Valorization of winery waste vs. the costs of not recycling. Waste Manag. 2011, 31, 2327–2335. [Google Scholar] [CrossRef]
- Benko, T.; Szanyi, A.; Mizsey, P.; Fonyo, Z. Environmental and economic comparison of waste solvent treatment options. Centr. Eur. J. Chem. 2006, 4, 92–110. [Google Scholar] [CrossRef]
- Apostolakis, A.; Grigorakis, S.; Makris, D.P. Optimisation and comparative kinetics study of polyphenol extraction from olive leaves (Olea europaea) using heated water/glycerol mixtures. Separ. Purif. Technol. 2014, 128, 89–95. [Google Scholar] [CrossRef]
- Galanakis, C. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Kiassos, E.; Mylonaki, S.; Makris, D.P.; Kefalas, P. Implementation of response surface methodology to optimise extraction of onion (Allium cepa) solid waste phenolics. Innov. Food Sci. Emerg. Technol. 2009, 10, 246–252. [Google Scholar] [CrossRef]
- Mylonaki, S.; Kiassos, E.; Makris, D.P.; Kefalas, P. Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Anal. Bioanal. Chem. 2008, 392, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Amyrgialaki, E.; Makris, D.P.; Mauromoustakos, A.; Kefalas, P. Optimisation of the extraction of pomegranate (Punica granatum) husk phenolics using water/ethanol solvent systems and response surface methodology. Ind. Crops Prod. 2014, 59, 216–222. [Google Scholar] [CrossRef]
- Cavdarova, M.; Makris, D.P. Extraction kinetics of phenolics from carob (Ceratonia siliqua L.) kibbles using environmentally benign solvents. Waste Biomass Valor. 2014, 5, 773–779. [Google Scholar] [CrossRef]
- Librán, C.M.; Mayor, L.; Garcia-Castello, E.M.; Vidal-Brotons, D. Polyphenol extraction from grape wastes: Solvent and pH effect. Agric. Sci. 2013, 4, 56–62. [Google Scholar]
- Karvela, E.; Makris, D.P.; Kalogeropoulos, N.; Karathanos, V.T. Deployment of response surface methodology to optimise recovery of grape (Vitis vinifera) stem polyphenols. Talanta 2009, 79, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Cacace, J.E.; Mazza, G. Optimization of extraction of anthocyanins from black currants with aqueous ethanol. J. Food Sci. 2003, 68, 240–248. [Google Scholar] [CrossRef]
- Khiari, Z.; Makris, D.P. An investigation on the recovery of antioxidant phenolics from onion solid wastes employing water/ethanol-based solvent systems. Food Bioproc. Technol. 2009, 4, 337–343. [Google Scholar] [CrossRef]
- Angelov, G.; Boyadzhieva, S.S.; Georgieva, S.S. Rosehip extraction: Process optimization and antioxidant capacity of extracts. Centr. Eur J. Chem. 2014, 12, 502–508. [Google Scholar] [CrossRef]
- Kefalas, P.; Makris, D.P. Antioxidant Plant Phenols: Sources, Structure-Activity Relationship, Current Trends in Analysis and Characterization; Boskou, D., Gerothanasis, I., Kefalas, P., Eds.; Research Signpost Publ.: Kerala, India, 2006; pp. 69–123. [Google Scholar]
- Monrad, J.K.; Howard, L.R.; King, J.W.; Srinivas, K.; Mauromoustakos, A. Subcritical solvent extraction of anthocyanins from dried red grape pomace. J. Agric. Food Chem. 2010, 58, 2862–2868. [Google Scholar] [CrossRef] [PubMed]
- Liazid, A.; Guerrero, R.; Cantos, E.; Palma, M.; Barroso, C. Microwave assisted extraction of anthocyanins from grape skins. Food Chem. 2011, 124, 1238–1243. [Google Scholar]
- Sidani, B.; Makris, D.P. Interactions of natural antioxidants with red grape pomace anthocyanins in a liquid model matrix: Stability and copigmentation effects. Chem. Ind. Chem. Eng. Q. 2011, 17, 59–66. [Google Scholar] [CrossRef]
- Sri Harsha, P.; Gardana, C.; Simonetti, P.; Spigno, G.; Lavelli, V. Characterization of phenolics, in vitro reducing capacity and anti-glycation activity of red grape skins recovered from winemaking by-products. Bioresour. Technol. 2013, 140, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Monrad, J.K.; Srinivas, K.; Howard, L.R.; King, J.W. Design and optimization of a semicontinuous hot–cold extraction of polyphenols from grape pomace. J. Agric. Food Chem. 2012, 60, 5571–5582. [Google Scholar] [CrossRef] [PubMed]
- Thimothe, J.; Bonsi, I.A.; Padilla-Zakour, O.I.; Koo, H. Chemical characterization of red wine grape (Vitis vinifera and Vitis interspecific hybrids) and pomace phenolic extracts and their biological activity against Streptococcus mutans. J. Agric. Food Chem. 2007, 55, 10200–10207. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tong, H.; Chen, F.; Gangemi, J.D. Chemical characterization and antioxidant evaluation of muscadine grape pomace extract. Food Chem. 2010, 123, 1156–1162. [Google Scholar] [CrossRef]
- Makris, D.P.; Kefalas, P. Characterization of polyphenolic phytochemicals in red grape pomace. Int. J. Waste Resour. 2013, 126. [Google Scholar]
- Luque-Rodríguez, J.M.; Luque de Castro, M.D.; Pérez-Juan, P. Dynamic superheated liquid extraction of anthocyanins and other phenolics from red grape skins of winemaking residues. Bioresour. Technol. 2007, 98, 2705–2713. [Google Scholar] [CrossRef]
- Yu, J.; Ahmedna, M. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 2013, 48, 221–237. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzima, K.; Kallithraka, S.; Kotseridis, Y.; Makris, D.P. Kinetic Modelling for Flavonoid Recovery from Red Grape (Vitis vinifera) Pomace with Aqueous Lactic Acid. Processes 2014, 2, 901-911. https://doi.org/10.3390/pr2040901
Tzima K, Kallithraka S, Kotseridis Y, Makris DP. Kinetic Modelling for Flavonoid Recovery from Red Grape (Vitis vinifera) Pomace with Aqueous Lactic Acid. Processes. 2014; 2(4):901-911. https://doi.org/10.3390/pr2040901
Chicago/Turabian StyleTzima, Katerina, Stamatina Kallithraka, Yorgos Kotseridis, and Dimitris P. Makris. 2014. "Kinetic Modelling for Flavonoid Recovery from Red Grape (Vitis vinifera) Pomace with Aqueous Lactic Acid" Processes 2, no. 4: 901-911. https://doi.org/10.3390/pr2040901
APA StyleTzima, K., Kallithraka, S., Kotseridis, Y., & Makris, D. P. (2014). Kinetic Modelling for Flavonoid Recovery from Red Grape (Vitis vinifera) Pomace with Aqueous Lactic Acid. Processes, 2(4), 901-911. https://doi.org/10.3390/pr2040901