Flotation of Biological Materials
Abstract
:1. Introduction
- (a)
- dispersed-air flotation (including electroflotation), and
- (b)
- dissolved-air flotation (just the initials are often used, as DAF).
2. The Separation Process Applied to the Area
Flotation details | Reference |
---|---|
Bacterial cells | [7] |
B. cereus, application to microbiology | [8] |
Bacteria and materials causing organic color | [9] |
Six species of bacteria (among other) | [10] |
Algae and activated sludge | [11] |
Saccharomyces carlsbergensis from culture broth | [12] |
Proteins, produced by yeast, fractionated | [13] |
Recovery of proteins, proteolytic enzymes | [14] |
Streptomyces pilosus after lead accumulation | [15] |
Yeast foam flotation | [16] |
Iron-oxidizing bacterium, mineral flotation | [17] |
Waste activated sludge | [18] |
Biosurfactants as collectors | [19] |
Mycobacterium phlei, hematite | [20] |
Biodegradable polymer flotation | [21] |
Silica-induced protein E. coli and quartz | [22] |
Algae separation | [23] |
Flotation in seawater desalination | [24] |
Tributyltin-based paints elimination | [25] |
Acid mine drainage high-rate flotation | [26] |
Serratia marcescens, flotation of iron ore | [27] |
NOM removal by coagulation | [28] |
EPS in bioflotation | [29] |
Acidithiobacillus ferrooxidans to replace NaCN | [30] |
Phanerochaete chrysosporium decompose pyrites | [31] |
Phosphate-dolomite separation, two bacteria | [32] |
Electroflotation sludge thickening | [33] |
Rhodococcus opacus, apatite/quartz | [34] |
Microorganism as collector for hematite | [35] |
3. Floatability of Biological Materials
4. Contact Angle
5. Surface Tension
6. Zeta-Potential
7. Flotation Techniques
8. Sustainable Chemistry
9. Concluding Remarks
Conflicts of Interest
References
- Matis, K.A. Flotation as a separation process. In Water Encyclopedia; Lehr, J., Ed.; Wiley: Hoboken, NJ, USA, 2005; Volume 1, pp. 684–688. [Google Scholar]
- Matis, K.A.; Mavros, P. Recovery of metals by ion flotation from dilute aqueous solutions. Sep. Purif. Methods 1991, 20, 1–48. [Google Scholar] [CrossRef]
- Zouboulis, A.I.; Matis, K.A. Removal of metal ions from dilute solutions by sorptive flotation. Crit. Rev. Environ. Sci. Tech. 1997, 27, 195–235. [Google Scholar] [CrossRef]
- Gaudin, A.M. Flotation of microorganisms. In Froth Flotation, 50th Anniversary Volume; Fuerstenau, D.W., Ed.; AIME: New York, NY, USA, 1962; pp. 658–667. [Google Scholar]
- Smith, R.W.; Misra, M. Recent developments in the bioprocessing of minerals. Miner. Process Extract. Metall. R. 1993, 12, 37–60. [Google Scholar] [CrossRef]
- Edzwald, J.K. Algae, bubbles, coagulants, and dissolved air flotation. Water Sci. Technol. 1993, 27, 67–81. [Google Scholar]
- Gaudin, A.M.; Mular, A.L.; O’Connor, R.F. Separation of microorganisms by flotation. I. Development and evaluation of assay procedures. Appl. Microbiol. 1960, 8, 84–90. [Google Scholar]
- Dobias, B.; Vinter, V. Flotation of microorganisms. Folia Microbiol. 1966, 2, 314–322. [Google Scholar] [CrossRef]
- Cassell, E.A.; Rubin, A.J.; Lafever, H.B.; Matijevic, E. Removing of organic colloids by microflotation. Proc. Purdue Ind. Waste Conf. 1968, 23, 966–977. [Google Scholar]
- Grieves, R.B. Flotation of particulates: Ferric oxide, bacteria, active carbon, and clays. In Adsorptive Bubble Separation Techniques; Lemlich, R., Ed.; Academic: New York, NY, USA, 1972; pp. 191–197. [Google Scholar]
- Bratby, J.; Marais, G.V.R. Flotation. In Solid/Liquid Separation Equipment Scale-Up; Purchas, D.B., Ed.; Uplands Press: Croydon, UK, 1977; pp. 155–198. [Google Scholar]
- Parthasarathy, S.; Das, T.R.; Kumar, R.; Gopalakrisnan, K.S. Foam separation of microbial cells. Biotechnol. Bioeng. 1988, 32, 174–183. [Google Scholar] [CrossRef]
- Potter, F.J.; DeSouza, A.H.; Tanner, R.D.; Wilson, D.J. Modelling in-situ protein separation by bubble fractionation in a baker’s yeast fermentation process. Sep. Sci. Technol. 1990, 25, 673–687. [Google Scholar] [CrossRef]
- Bhattacharya, E.; Ghosal, S.K.; Sen, K. Effect of physicochemical parameters on the separation of proteins from human placental extract by using a continuous foam fractionating column. Sep. Sci. Technol. 1991, 26, 1279–1293. [Google Scholar] [CrossRef]
- Sadowski, Z.; Golab, Z.; Smith, R.W. Flotation of Strepromyces pilosus after lead accumulation. Biotechnol. Bioeng. 1991, 37, 955–959. [Google Scholar] [CrossRef]
- Bahr, K.H.; Schűgerl, K. Recovery of yeast from cultivation medium by continuous flotation and its dependence on cultivation conditions. Chem. Eng. Sci. 1992, 47, 11–20. [Google Scholar] [CrossRef]
- Ohmura, N.; Kitamura, K.; Saiki, H. Mechanism of microbial flotation using Thiobacillus ferrooxidans for pyrite suppression. Biotechnol. Bioeng. 1993, 41, 671–676. [Google Scholar] [CrossRef]
- De Rijk, S.E.; van der Graaf, J.H.J.M.; den Blanken, J.G. Bubble size in flotation thickening. Water Res. 1994, 28, 465–473. [Google Scholar] [CrossRef]
- Zouboulis, A.I.; Matis, K.A.; Lazaridis, N.K.; Golyshin, P.N. The use of biosurfactants in flotation: Application for the removal of metal ions. Miner. Eng. 2003, 16, 1231–1236. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Q.; Jiang, Z. Adsorbability of Mycobacterium phlei on hematite surface. J. Univ. Sci. Technol. Beijing 2007, 14, 103–106. [Google Scholar] [CrossRef]
- Jacquel, N.; Lo, C.-W.; Wei, Y.-H.; Wu, H.-S.; Wang, S.S. Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem. Eng. J. 2008, 39, 15–27. [Google Scholar] [CrossRef]
- Farahat, M.; Hirajima, T.; Sasaki, K.; Aiba, Y.; Doi, K. Adsorption of SIP E. coli onto quartz and its application in froth flotation. Miner. Eng. 2008, 21, 389–395. [Google Scholar] [CrossRef]
- Henderson, R.; Parsons, S.A.; Jefferson, B. The impact of algal properties and pre-oxidtion on solid-liquid separation of algae. Water Res. 2008, 42, 1827–1845. [Google Scholar] [CrossRef]
- Peleka, E.N.; Matis, K.A. Application of flotation as a pretreatment process during desalination. Desalination 2008, 222, 1–8. [Google Scholar] [CrossRef]
- Kotrikla, A. Environmental management aspects for TBT antifouling wastes from the shipyards. J. Environ. Manag. 2009, 90, 577–585. [Google Scholar] [CrossRef]
- Da Silveira, A.N.; Silva, R.; Rubio, J. Treatment of acid mine drainage (AMD) in South Brazil. Comparative active processes and water reuse. Int. J. Miner. Process. 2009, 93, 103–109. [Google Scholar] [CrossRef]
- Araujo, D.M.; Yoshida, M.I.; Takahashi, J.A.; Carvalho, C.F.; Stapelfeldt, F. Biodegradation studies on fatty amines used for reverse flotation of iron ore. Int. Biodeterior. Biodegrad. 2010, 64, 151–155. [Google Scholar] [CrossRef]
- Matilainen, A.; Vepsäläinen, M.; Sillanpää, M. Natural organic matter removal by coagulation during drinking water treatment: A review. Adv. Colloid Interf. Sci. 2010, 159, 189–197. [Google Scholar] [CrossRef]
- Govender, Y.; Gericke, M. Extracellular polymeric substances (EPS) from bioleaching systems and its application in bioflotation. Miner. Eng. 2011, 24, 1122–1127. [Google Scholar] [CrossRef]
- Mehrabani, J.V.; Mousavi, S.M.; Noaparast, M. Evaluation of the replacement of NaCN with Acidithiobacillus ferrooxidans in the flotation of high-pyrite, low-grade lead-zinc ore. Sep. Purif. Technol. 2011, 80, 202–208. [Google Scholar] [CrossRef]
- Ofori-Sarpong, G.; Osseo-Asare, K.; Tien, M. Fungal pretreatment of sulfides in refractory gold ores. Miner. Eng. 2011, 24, 499–504. [Google Scholar] [CrossRef]
- Elmahdy, A.M.; El-Mofty, S.E.; Abdel-Khalek, M.A.; Abdel-Khalek, N.A.; El-Midany, A.A. Bacterially induced phosphate-dolomite separation using amphoteric collector. Sep. Purif. Technol. 2013, 102, 94–102. [Google Scholar] [CrossRef]
- Rahmani, A.R.; Nematollahi, D.; Godini, K.; Azarian, G. Continuous thickening of activated sludge by electro-flotation. Sep. Purif. Technol. 2013, 107, 166–171. [Google Scholar] [CrossRef]
- Merma, A.G.; Torem, M.L.; Morán, J.J.V.; Monte, M.B.M. On the fundamental aspects of apatite and quartz flotation using a Gram positive strain as a bioreagent. Miner. Eng. 2013, 48, 61–67. [Google Scholar] [CrossRef]
- Yang, H.; Tang, Q.; Wang, C.; Zhang, J. Flocculation and flotation response of Rhodococcus erythropolis to pure minerals in hematite ores. Miner. Eng. 2013, 45, 67–72. [Google Scholar] [CrossRef]
- Zouboulis, A.I.; Matis, K.A.; Lazaridis, N.K. The application of flotation for the downstream separation of microorganisms. Int. J. Environ. Pollut. 2007, 30, 287–295. [Google Scholar] [CrossRef]
- Zouboulis, A.I.; Lazaridis, N.K.; Matis, K.A. The process of flotation: An efficient solid/liquid separation technique for biological materials. Int. J. Environ. Pollut. 2008, 32, 29–42. [Google Scholar] [CrossRef]
- Matis, K.A.; Zouboulis, A.I.; Lazaridis, N.K. Removal and Recovery of Metals from Dilute Solutions: Applications of flotation techniques. In Mineral Processing and the Environment; Gallios, G.P., Matis, K.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp. 165–196. [Google Scholar]
- Rao, K.H.; Vilinska, A.; Chernysova, I.V. Minerals bioprocessing: R & D needs in mineral biobeneficiation. Hydrometallurgy 2010, 104, 465–470. [Google Scholar] [CrossRef]
- Chan, H. High performance achieved by microbes to separate laundry effluents resulting in producing high water quality in a compact area. Sep. Purif. Technol. 2012, 90, 101–108. [Google Scholar] [CrossRef]
- Del Nery, V.; Damianovic, M.H.Z.; Pozzi, E.; de Nardi, I.R.; Caldas, V.E.A.; Pires, E.C. Long-term performance and operational strategies of a poultry slaughterhouse waste stabilization pond system in a tropical climate. Resour. Conserv. Recycl. 2013, 71, 7–14. [Google Scholar] [CrossRef]
- Petrovski, S.; Dyson, S.A.; Quill, E.S.; McIlroy, S.J.; Tillett, D.; Seviour, R.J. An examination of the mechanisms for stable foam formation in activated sludge systems. Water Res. 2011, 45, 2146–2154. [Google Scholar] [CrossRef]
- Lee, B.H.; Song, W.C.; Manna, B.; Ha, J.K. Dissolved ozone flotation (DOF)—A promising technology in municipal wastewater treatment. Desalination 2008, 225, 260–273. [Google Scholar] [CrossRef]
- Zamboulis, D.; Peleka, E.N.; Lazaridis, N.K.; Matis, K.A. Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. J. Chem. Technol. Biot. 2011, 86, 335–344. [Google Scholar] [CrossRef]
- Matis, K.A.; Zouboulis, A.I. Flotation techniques in water technology for metals recovery: The impact of speciation. Sep. Sci. Technol. 2001, 36, 3777–3800. [Google Scholar] [CrossRef]
- Zouboulis, A.I.; Matis, K.A.; Spathis, P.K. Removal of zinc from solutions by precipitate flotation. Technol. Chron. C 1987, 7, 5–27. [Google Scholar]
- Fuerstenau, M.C. Oxide and silicate flotation. In Flotation Science and Engineering; Matis, K.A., Ed.; Marcel Dekker: New York, NY, USA, 1995; pp. 89–126. [Google Scholar]
- Gallios, G.P.; Matis, K.A. Flotation of salt-type minerals. In Innovations in Flotation Technology; Mavros, P., Matis, K.A., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1992; pp. 357–382. [Google Scholar]
- Zouboulis, A.I.; Matis, K.A. Biosorptive flotation for metal ions removal: The influence of surface tension. Desalination 2009, 253, 1–13. [Google Scholar]
- Freund, J.; Dobiãs, B. The role of surface tension. In Flotation Science and Engineering; Matis, K.A., Ed.; Marcel Dekker: New York, NY, USA, 1995; pp. 45–61. [Google Scholar]
- Zouboulis, A.I.; Matis, K.A. Hydrophobicity in biosorptive flotation for metal ion removal. Int. J. Environ. Technol. Manag. 2010, 12, 192–201. [Google Scholar] [CrossRef]
- Kydros, K.A.; Matis, K.A. Flotation of iron sulphide minerals: Electrokinetic aspects. In Flotation Science and Engineering; Matis, K.A., Ed.; Marcel Dekker: New York, NY, USA, 1995; pp. 127–155. [Google Scholar]
- Zouboulis, A.I.; Kydros, K.A.; Matis, K.A. Removal of hexavalent chromium anions from solutions by pyrite fines. Water Res. 1995, 29, 1755–1760. [Google Scholar] [CrossRef]
- Zouboulis, A.I.; Rousou, E.G.; Matis, K.A.; Hancock, I.C. Removal of toxic metals from aqueous mixtures: Part 1. Biosorption. J. Chem. Technol. Biot. 1999, 74, 429–436. [Google Scholar] [CrossRef]
- Zouboulis, A.I.; Lazaridis, N.K.; Matis, K.A. Removal of toxic metal ions from aqueous systems by biosorptive flotation. J. Chem. Technol. Biot. 2002, 77, 958–964. [Google Scholar] [CrossRef]
- Matis, K.A.; Zouboulis, A.I.; Grigoriadou, A.A.; Lazaridis, N.K.; Ekateriniadou, L.V. Metal biosorption—Flotation. Application to cadmium removal. Appl. Microbiol. Biotechnol. 1996, 45, 569–573. [Google Scholar]
- Matis, K.A.; Lazaridis, N.K. Flotation techniques in water technology for metals recovery: Dispersed-air vs. dissolved-air flotation. J. Min. Metall. A 2002, 38, 1–27. [Google Scholar] [CrossRef]
- Matis, K.A.; Peleka, E.N. Alternative flotation techniques for wastewater treatment: Focus on electroflotation. Sep. Sci. Technol. 2010, 45, 2465–2474. [Google Scholar] [CrossRef]
- Zouboulis, A.I.; Matis, K.A. Cadmium ion removal by electroflotation onto sewage sludge biomass. Int. J. Environ. Waste Manag. 2012, 9, 245–256. [Google Scholar]
- Kydros, K.A.; Gallios, G.P.; Matis, K.A. Electrolytic flotation of pyrite. J. Chem. Technol. Biot. 1994, 59, 223–232. [Google Scholar] [CrossRef]
- Emmanouil, V.; Skaperdas, E.; Karapantsios, T.D.; Matis, K.A. Two phase simulations of an off-nominally operating dissolved-air flotation tank. Int. J. Environ. Pollut. 2007, 30, 213–230. [Google Scholar] [CrossRef]
- García-Serna, J.; Pérez-Barrigón, L.; Cocero, M.J. New trends for design towards sustainability in chemical engineering: Green engineering. Chem. Eng. J. 2007, 133, 7–30. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, D.; Wei, F. The ecological perspective in chemical engineering. Chem. Eng. Sci. 2004, 59, 1885–1895. [Google Scholar] [CrossRef]
- Peleka, E.N.; Matis, K.A. Water separation processes and sustainability. Ind. Eng. Chem. Res. 2011, 50, 421–430. [Google Scholar] [CrossRef]
- Butter, T.J.; Evison, L.M.; Hancock, I.C.; Holland, F.S.; Matis, K.A.; Philipson, A.; Sheikh, A.I.; Zouboulis, A.I. The removal and recovery of cadmium from dilute aqueous solutions by biosorption and electrolysis at laboratory scale. Water Res. 1998, 32, 400–406. [Google Scholar] [CrossRef]
- Matis, K.A.; Peleka, E.N.; Zamboulis, D.; Erwe, T.; Mavrov, V. Air sparging during the solid/liquid separation by microfiltration: Application of flotation. Sep. Purif. Technol. 2004, 40, 1–7. [Google Scholar] [CrossRef]
- Peleka, E.N.; Matis, K.A. Bioremoval of metal ion and water treatment in a hybrid unit. Sep. Sci. Technol. 2009, 44, 3597–3614. [Google Scholar] [CrossRef]
- Nenov, V.; Lazaridis, N.K.; Blöcher, C.; Bonev, B.; Matis, K.A. Metal recovery from a copper mine effluent by a hybrid process. Chem. Eng. Process. 2008, 47, 596–602. [Google Scholar] [CrossRef]
- Smith, R.W.; Miettinen, M. Microorganisms in flotation and flocculation: Future technology or laboratory curiosity? Miner. Eng. 2006, 19, 548–553. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kyzas, G.Z.; Matis, K.A. Flotation of Biological Materials. Processes 2014, 2, 293-310. https://doi.org/10.3390/pr2010293
Kyzas GZ, Matis KA. Flotation of Biological Materials. Processes. 2014; 2(1):293-310. https://doi.org/10.3390/pr2010293
Chicago/Turabian StyleKyzas, George Z., and Kostas A. Matis. 2014. "Flotation of Biological Materials" Processes 2, no. 1: 293-310. https://doi.org/10.3390/pr2010293