# New Biosorbent Materials: Selectivity and Bioengineering Insights

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Selectivity

^{2+}> Cu

^{2+}> Zn

^{2+}was found [20]. Although biosorption for reclaiming single precious metal was frequently reported, the actual subsistent adsorptive competition among different metal ions sometimes shows diverging reinforcement or prohibition for different species. Another study tried to screen bacteria that are able to absorb certain precious metals with high selectivity under competitive conditions. For binary metal system, the adsorption parameters of extended-Langmuir model were modified by introducing a selectivity factor of the solute [21].

^{+}/H

^{+}/Cd

^{2+}or Na

^{+}/H

^{+}/Pb

^{2+}[22]. The selectivity coefficients of the Na-loaded algae increases in the following order: Na

^{+}< H

^{+}< Cd

^{2+}< Pb

^{2+}, which indicates that carboxylic and sulfonic groups have a higher preference (affinity) to Pb

^{2+}, followed by Cd

^{2+}, H

^{+}and Na

^{+}. The higher affinity of lead ion to sulfonic groups was attributed to the hard and soft acid and base theory. A mass transfer model, considering that the ion exchange limiting step is the intraparticle ion diffusion, was then able to fit the concentration profile of all ionic species at the liquid and solid phases.

#### 2.1. MIPs as Alternative Biosorbent Candidates

**Figure 1.**Example for the synthesis of Molecular Imprinted Polymers (MIPs) for capturing/binding dye molecules.

#### 2.2. Limitations

**Figure 2.**SEM micrographs of dye-MIPs using (

**a**) aqueous and (

**b**) organic solvent. Reproduced with permission from George Z. Kyzas [44], published by Elsevier, 2009.

**Figure 3.**Example for the synthesis of MIP for capturing/binding dye molecules. Reproduced with permission from Rosa A. Lorenzo [50], published by MDPI AG, 2011.

## 3. Isotherm Models

^{m}

_{t}) and the average affinity(K

_{0})); m is the Freundlich constant which represents the heterogeneity index and varies from zero to one (values approaching to zero indicate increasingly heterogeneity and one being homogeneous); C is the equilibrium concentration of template. The term B in Equation (2) was calculated from the simple mass balance equation as follows:

_{0}is the initial pollutant concentration, C is the pollutant concentration at equilibrium, V is the volume of and M is the mass of biosorbent. The linearized form of Equation (2) was obtained by taking log on both sides:

_{t}), using the general expression:

_{t}is the total number of accessible adsorption sites; C is the equilibrium concentration of template; K is the Langmuir isotherm equilibrium constant.

_{1}, N

_{1}and K

_{2}, N

_{2}) for the two classes of binding sites within the imprinted polymer can be obtained. The steeper line corresponds to the high-affinity sites while the flatter line measured the low-affinity ones.

_{t}is the total number of binding sites and K

_{0}is the median binding affinity):

_{0}via K

_{0}= a

^{1/}

^{m}. The fitting parameter “m” is identical to the heterogeneity index of site energies from the Freundlich isotherm. The difference between the L-F model and the Freundlich one is evident at high adsorbate concentrations, for which the L-F model is able to represent the saturation behavior. At low adsorbate concentrations, the L-F equation reduces to the classical Freundlich equation. On the other hand, as m approaches unity, indicative of a completely homogeneous adsorbent surface (i.e., energetic equivalence of all binding sites) the L-F equation reduces to the classical Langmuir equation. Thus, the hybridised L-F isotherm is able to model adsorption of solutes at high and low concentrations onto homogeneous and heterogeneous biosorbents. Although a linear analysis is not possible for a three-parameter isotherm, the L-F isotherm can be fitted to the experimental data following the method of Shimizu et al. [4,5] in which a solver function may be used to maximize the coefficient of determination (R

^{2}) by iteratively varying the three fitting parameters N

_{t}, a and m. R

^{2}is calculated from the sum of residuals (i.e., the difference between the experimental model and model-predicted bound concentrations).

#### 3.1. Examples

## 4. Affinity Distribution Analysis

_{min}− K

_{max}), the sum of all sites N

_{i}multiplied by the corresponding affinity constant, K

_{i}, is divided by the sum of N

_{i}, which is the total number of sites N Equation (9):

_{i}K

_{i}/∑N

_{i}= ∑N

_{i}K

_{i}/N

_{i}K

_{i}of the Equation (8) can be shifted using the integration of the number of binding sites with its corresponding association constant each time. When this is divided by the number of binding sites N from Equation (10), the number average association constant (K

_{av}) is obtained.

## 5. Kinetics

_{1}is the reaction rate constant [L × (mg

^{−1}of metal) × min

^{−1}]; C is the metal bulk concentration (mg·L

^{−1}). Subscripts 0 and t denote conditions at the beginning and any other instant (time, t) of the process, respectively; and the subscript e denotes equilibrium conditions.

_{2}is the reaction rate constant (min

^{−1}). When in the above treatment it is not necessarily q

_{e}to dictate the sorbate uptake then a pseudo 2nd order rate expression is more appropriate:

_{m}is the reaction rate constant [g of sorbent × (mg

^{−1}of metal) × min

^{−1}] and q

_{m}is a numerically determined parameter which under ideal 2nd order rate control corresponds to q

_{e}. It is noted that in the literature [92] various other kinetic equations have been attempted: zero, first (forward or reversible) order, Langmuir-Hinshelwood, Elovich-type, etc.

**Figure 4.**Comparison of experimental removal curves against theoretical predictions based: (

**a**) on the Ritchie 2nd order equation (at initial cadmium concentration of 5 mg·L

^{−1}) and (

**b**) on the pseudo 2nd order equation (at initial cadmium concentration of 50 mg·L

^{−1}). Reprinted with permission from reference [94]; copyright (2005) Taylor & Francis.

_{n}is given by the non-zero roots of

_{0}− C

_{∞})/C

_{0}is the fraction of metal ultimately adsorbed by the sorbent.

_{c}/ R

_{c}

^{2}, D

_{c}and R

_{c}being the intraparticle diffusion coefficient (m

^{2}·s

^{−1}) and mean particle radius (m), respectively. The same expression is the solution of the diffusion equation for a (macro) pore diffusion control but only in cases where the equilibrium isotherm is linear for the concentration range under investigation.

_{m}is the external mass transfer coefficient (m·s

^{−1}), S is the specific surface area of the sorbent particles per unit volume of the reactor (m

^{2}·m

^{−3}) and X is the sorbent feeding per unit volume of solution (g·L

^{−1}); dimensionless variables could be also used. The conversion a system of two first-order ordinary differential equations that must be solved simultaneously [99]. The values of Λ, ξ and the computed values of D

_{c}(being the intraparticle diffusion coefficient, m

^{2}·s

^{−1}) were displayed in the form of a table.

_{m}S, respectively. The non-linear numerical regression to fit experimental data to those equations is performed by the Levenberg-Marquardt method, which gradually shifts the search for the minimum of the sum of the errors squared, from steepest descent to quadratic minimization—i.e., Gauss-Newton [100]. Figure 5a presents the results of fitting Equation (15) to biosorption data obtained with different initial concentrations, solids loads and temperatures. It is apparent that despite some scatter in measurements the finite volume diffusion model can describe fairly well the entire range of data, including also the steep concentration gradient at short times. Such behavior has been customary met as a consequence of the decreasing slope of a non-linear equilibrium curve, e.g., Langmuir isotherm, which causes the diffusivity to increase rapidly with increasing concentration [93].

**Figure 5.**Experimental degree of conversion, α, against predictions based on the solution of the: (

**a**) diffusion equation, for various adsorbent loads and (

**b**) mass transfer equation, for various temperatures (both at initial chromium concentration of 5 mg·L

^{−1}). Reprinted with permission from Ref. [99]; copyright (2004) American Chemical Society.

## 6. Conclusions

## Conflicts of Interest

## References

- Erwe, T.; Mavrov, V.; Peleka, E.N.; Matis, K.A. Bonding of Toxic Metal Ions; Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Peleka, E.N.; Matis, K.A. Water separation processes and sustainability. Ind. Eng. Chem. Res.
**2011**, 50, 421–430. [Google Scholar] [CrossRef] - Loukidou, M.X.; Peleka, E.N.; Karapantsios, T.D.; Matis, K.A. Biosorption of metal ions. Trends Chem. Eng.
**2011**, 13, 53–64. [Google Scholar] - Loukidou, M.X.; Karapantsios, T.D.; Zouboulis, A.I.; Matis, K.A. Diffusion kinetic study of cadmium(II) biosorption by Aeromonas caviae. J. Chem. Technol. Biotechnol.
**2004**, 79, 711–719. [Google Scholar] [CrossRef] - Loukidou, M.X.; Zouboulis, A.I.; Karapantsios, T.D.; Matis, K.A. Equilibrium and kinetic modeling of chromium(VI) biosorption by Aeromonas caviae. Colloid. Surface A
**2004**, 242, 93–104. [Google Scholar] [CrossRef] - Butter, T.J.; Evison, L.M.; Hancock, I.C.; Holland, F.S.; Matis, K.A.; Philipson, A.; Sheikh, A.I.; Zouboulis, A.I. The removal and recovery of cadmium from dilute aqueous solutions by biosorption and electrolysis at laboratory scale. Water Res.
**1998**, 32, 400–406. [Google Scholar] [CrossRef] - Zouboulis, A.I.; Rousou, E.G.; Matis, K.A.; Hancock, I.C. Removal of toxic metals from aqueous mixtures. Part 1: Biosorption. J. Chem. Technol. Biotechnol.
**1999**, 74, 429–436. [Google Scholar] [CrossRef] - Kyzas, G.Z.; Matis, K.A. Flotation of biological materials. Processes
**2014**, 2, 293–310. [Google Scholar] [CrossRef] - Zamboulis, D.; Peleka, E.N.; Lazaridis, N.K.; Matis, K.A. Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. J. Chem. Technol. Biotechnol.
**2011**, 86, 335–344. [Google Scholar] [CrossRef] - Aksu, Z. Application of biosorption for the removal of organic pollutants: A review. Process Biochem.
**2005**, 40, 997–1026. [Google Scholar] [CrossRef] - Hughes, M.N.; Poole, R.K. Metals and Microorganisms; Chapman and Hall: London, UK, 1989. [Google Scholar]
- Hancock, I.C. The use of Gram-positive bacteria for the removal of metals from aqueous solution. In Trace Metal Removal from Aqueous Solution; Thompson, R., Ed.; Royal Society of Chemistry: London, UK, 1986; pp. 25–43. [Google Scholar]
- Esposito, A.; Pagnanelli, F.; Lodi, A.; Solisio, C.; Veglio, F. Biosorption of heavy metals by Sphaerotilus natans: An equilibrium study at different pH and biomass concentration. Hydrometallurgy
**2001**, 60, 129–141. [Google Scholar] [CrossRef] - Zouboulis, A.I.; Matis, K.A.; Hancock, I.C. Biosorption of metals from dilute aqueous solutions. Sep. Purif. Methods
**1997**, 26, 255–295. [Google Scholar] [CrossRef] - Solari, P.; Zouboulis, A.I.; Matis, K.A.; Stalidis, G.A. Removal of toxic metals by biosorption onto nonliving sewage sludge. Sep. Sci. Technol.
**1996**, 31, 1075–1092. [Google Scholar] [CrossRef] - Gadd, G.M. Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Biotechnol.
**2009**, 84, 13–28. [Google Scholar] [CrossRef] - Zouboulis, A.I.; Kydros, K.A.; Matis, K.A. Adsorbing flotation of copper hydroxo precipitates by pyrite fines. Sep. Sci. Technol.
**1992**, 27, 2143–2155. [Google Scholar] - Zouboulis, A.I.; Matis, K.A.; Rousou, E.G.; Kyriakidis, D.A. Biosorptive flotation for metal ions recovery. Water Sci. Technol.
**2001**, 43, 123–129. [Google Scholar] - Micheletti, E.; Colica, G.; Viti, C.; Tamagnini, P.; De Philippis, R. Selectivity in the heavy metal removal by exopolysaccharide-producing cyanobacteria. J. Appl. Microbiol.
**2008**, 105, 88–94. [Google Scholar] [CrossRef] - Şengil, A.; Özacar, M. Competitive biosorption of Pb
^{2+}, Cu^{2+}and Zn^{2+}ions from aqueous solutions onto valonia tannin resin. J. Hazard. Mater.**2009**, 166, 1488–1494. [Google Scholar] [CrossRef] - Soetaredjo, F.E.; Kurniawan, A.; Ki, O.L.; Ismadji, S. Incorporation of selectivity factor in modeling binary component adsorption isotherms for heavy metals-biomass system. Chem. Eng. J.
**2013**, 219, 137–148. [Google Scholar] [CrossRef] - Hackbarth, F.V.; Girardi, F.; de Souza, S.M.A.G.U.; de Souza, A.A.U.; Boaventura, R.A.R.; Vilar, V.J.P. Marine macroalgae Pelvetia canaliculata (Phaeophyceae) as a natural cation exchanger for cadmium and lead ions separation in aqueous solutions. Chem. Eng. J.
**2013**, 242, 294–305. [Google Scholar] - Ghimire, K.N.; Inoue, J.I.; Inoue, K.; Kawakita, H.; Ohto, K. Adsorptive separation of metal ions onto phosphorylated orange waste. Sep. Sci. Technol.
**2008**, 43, 362–375. [Google Scholar] - Liu, B.; Lv, X.; Meng, X.; Yu, G.; Wang, D. Removal of Pb(II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb(II) as imprinted ions. Chem. Eng. J.
**2013**, 220, 412–419. [Google Scholar] - Liang, P.; Wang, D.; Qi, H.; Liu, X.; Xu, Y. Biosorption of citric acid-cadmium complex by imprinted chitosan polymer. Desalin. Water Treat.
**2013**, 51, 3754–3761. [Google Scholar] [CrossRef] - Mayes, A.G.; Whitcombe, M.J. Synthetic strategies for the generation of molecularly imprinted organic polymers. Adv. Drug Del. Rev.
**2005**, 57, 1742–1778. [Google Scholar] [CrossRef] - Chen, B.; Piletsky, S.; Turner, A.P.F. Molecular recognition: Design of “keys”. Comb. Chem. HighThroughput Screen.
**2002**, 5, 409–427. [Google Scholar] [CrossRef] - Srinivasan, R. Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water. Adv. Mater. Sci. Eng.
**2011**, 2011, 872531. [Google Scholar] [CrossRef] - Sasaki, H.; Kobashi, Y.; Nagai, T.; Maeda, M. Application of electron beam melting to the removal of phosphorus from silicon: Toward production of solar-grade silicon by metallurgical processes. Adv. Mater. Sci. Eng.
**2013**, 2013, 857196. [Google Scholar] - Radenović, A.; Malina, J.; Sofilić, T. Characterization of ladle furnace slag from carbon steel production as a potential adsorbent. Adv. Mater. Sci. Eng.
**2013**, 2013, 198240. [Google Scholar] - Alahmadi, S.M.; Mohamad, S.; Jamil Maah, M. Preparation of organic-inorganic hybrid materials based on MCM-41 and its applications. Adv. Mater. Sci. Eng.
**2013**, 2013, 634863. [Google Scholar] - Balogh, A.G.; Baba, K.; Cohen, D.D.; Elliman, R.G.; Ensinger, W.; Gyulai, J. Modification, synthesis, and analysis of advanced materials using ion beam techniques. Adv. Mater. Sci. Eng.
**2012**, 2012, 431297. [Google Scholar] - Jiang, G.; Chen, T.; Yang, Q. Photocatalytic materials. Adv. Mater. Sci. Eng.
**2012**, 2012, 186948. [Google Scholar] - Mobarak, Y.; Bassyouni, M.; Almutawa, M. Materials selection, synthesis, and dielectrical properties of PVC nanocomposites. Adv. Mater. Sci. Eng.
**2013**, 2013, 149672. [Google Scholar] - Polyakov, M.V. Adsorption properties and structure of silica gel. J. Phys. Chem.
**1931**, 2, 799–805. [Google Scholar] - Dickey, F.H. Specific adsorption. J. Phys. Chem.
**1955**, 59, 695–707. [Google Scholar] [CrossRef] - Wulff, G.; Sarhan, A. Use of polymers with enzyme-analogous structures for the resolution of racemates. Angew. Chem. Int. Ed. Engl.
**1972**, 11, 341–344. [Google Scholar] - Sellergren, B.; Andersson, L.I. Molecular recognition in macroporous polymers prepared by a substrate-analog imprinting strategy. J. Org. Chem.
**1990**, 55, 3381–3383. [Google Scholar] [CrossRef] - Shea, K.J.; Sasaki, D.Y. An analysis of small-molecule binding to functionalized synthetic polymers by 13C CP/MAS NMR and FT-IR spectroscopy. J. Am. Chem. Soc.
**1991**, 113, 4109–4120. [Google Scholar] [CrossRef] - Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev.
**2002**, 102, 1–27. [Google Scholar] [CrossRef] - Arshady, R.; Mosbach, K. Synthesis of substrate-selective polymers by host-guest polymerization. Makromol. Chem.
**1981**, 182, 687–692. [Google Scholar] [CrossRef] - Whitcombe, M.J.; Rodriguez, M.E.; Villar, P.; Vulfson, E.N. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting-synthesis and characterization of polymeric receptors for cholesterol. J. Am. Chem. Sci.
**1995**, 117, 7105–7111. [Google Scholar] [CrossRef] - Sellergren, B. Imprinted dispersion polymers: A new class of easily accessible affinity stationary phases. J. Chromatogr. A
**1994**, 673, 133–141. [Google Scholar] [CrossRef] - Kyzas, G.Z.; Bikiaris, D.N.; Lazaridis, N.K. Selective separation of basic and reactive dyes by molecularly imprinted polymers (mips). Chem. Eng. J.
**2009**, 149, 263–272. [Google Scholar] [CrossRef] - Lloyd, L.L. Rigid macroporous copolymers as stationary phases in high-performance liquid chromatography. J. Chromatogr. A
**1991**, 544, 201–217. [Google Scholar] [CrossRef] - Ellwanger, A.; Berggren, C.; Bayoudh, S.; Crecenzi, C.; Karlsson, L.; Owens, P.K.; Ensing, K.; Cormack, P.; Sherrington, D.; Sellergren, B. Evaluation of methods aimed at complete removal of template from molecularly imprinted polymers. Analyst
**2001**, 126, 784–792. [Google Scholar] - Shea, K.J.; Sasaki, D.Y.; Stoddard, G.J. Fluorescence probes for evaluating chain solvation in network polymers. An analysis of the solvatochromic shift of the dansyl probe in macroporous styrene-divinylbenzene and styrene-diisopropenylbenzene copolymers. Macromolecules
**1989**, 22, 1722–1730. [Google Scholar] [CrossRef] - Lanza, F.; Sellergen, B. The application of molecular imprinting technology to solid phase extraction. Chromatographia
**2001**, 53, 599–611. [Google Scholar] [CrossRef] - Szumski, M.; Buszewski, B. Molecularly imprinted polymers: A new tool for separation of steroid isomers. J. Sep. Sci.
**2004**, 27, 837–842. [Google Scholar] [CrossRef] - Lorenzo, R.A.; Carro, A.M.; Alvarez-Lorenzo, C.; Concheiro, A. To remove or not to remove? The challenge of extracting the template to make the cavities available in molecularly imprinted polymers (mips). Int. J. Mol. Sci.
**2011**, 12, 4327–4347. [Google Scholar] [CrossRef] - Martin, P.D.; Jones, G.R.; Stringer, F.; Wilson, I.D. Comparison of normal and reversed-phase solid phase extraction methods for extraction of β-blockers from plasma using molecularly imprinted polymers. Analyst
**2003**, 128, 345–350. [Google Scholar] [CrossRef] - Fu, G.Q.; Yu, H.; Zhu, J. Imprinting effect of protein-imprinted polymers composed of chitosan and polyacrylamide: A re-examination. Biomaterials
**2008**, 29, 2138–2142. [Google Scholar] - Yungerman, I.; Srebnik, S. Factors contributing to binding-site imperfections in imprinted polymers. Chem. Mater.
**2006**, 18, 657–663. [Google Scholar] [CrossRef] - Bunin, G.; François, G.; Bonvin, D. A real-time optimization framework for the iterative controller tuning problem. Processes
**2013**, 1, 203–237. [Google Scholar] [CrossRef] - Chiavazzo, E.; Gear, C.; Dsilva, C.; Rabin, N.; Kevrekidis, I. Reduced models in chemical kinetics via nonlinear data-mining. Processes
**2014**, 2, 112–140. [Google Scholar] [CrossRef] - Donato, D.; Napoli, I.; Catapano, G. Model-based optimization of scaffold geometry and operating conditions of radial flow packed-bed bioreactors for therapeutic applications. Processes
**2014**, 2, 34–57. [Google Scholar] [CrossRef] - Ji, G.; Wang, G.; Hooman, K.; Bhatia, S.; da Costa, J. Scale-up design analysis and modeling of cobalt oxide silica membrane module for hydrogen processing. Processes
**2013**, 1, 49–66. [Google Scholar] [CrossRef] - Kapoor, K.; Powell, K.; Cole, W.; Kim, J.; Edgar, T. Improved large-scale process cooling operation through energy optimization. Processes
**2013**, 1, 312–329. [Google Scholar] - Klemuk, S.; Vigmostad, S.; Endapally, K.; Wagner, A.; Titze, I. A multiwell disc appliance used to deliver quantifiable accelerations and shear stresses at sonic frequencies. Processes
**2014**, 2, 71–88. [Google Scholar] [CrossRef] - Lakerveld, R.; Benyahia, B.; Heider, P.; Zhang, H.; Braatz, R.; Barton, P. Averaging level control to reduce off-spec material in a continuous pharmaceutical pilot plant. Processes
**2013**, 1, 330–348. [Google Scholar] [CrossRef][Green Version] - Rogers, A.; Hashemi, A.; Ierapetritou, M. Modeling of particulate processes for the continuous manufacture of solid-based pharmaceutical dosage forms. Processes
**2013**, 1, 67–127. [Google Scholar] [CrossRef] - Schaschke, C.; Fletcher, I.; Glen, N. Density and viscosity measurement of diesel fuels at combined high pressure and elevated temperature. Processes
**2013**, 1, 30–48. [Google Scholar] [CrossRef] - Sen, M.; Barrasso, D.; Singh, R.; Ramachandran, R. A multi-scale hybrid CFD-DEM-PBM description of a fluid-bed granulation process. Processes
**2014**, 2, 89–111. [Google Scholar] [CrossRef] - Shahmoon, A.; Zalevsky, Z. Electrical model for analyzing chemical kinetics, lasing and bio-chemical processes. Processes
**2013**, 1, 12–29. [Google Scholar] [CrossRef] - Song, H.-S.; Ramkrishna, D. Complex nonlinear behavior in metabolic processes: Global bifurcation analysis of Escherichia coli growth on multiple substrates. Processes
**2013**, 1, 263–278. [Google Scholar] [CrossRef] - Travis, C.; Adomaitis, R. Dynamic modeling for the design and cyclic operation of an Atomic Layer Deposition (ALD) Reactor. Processes
**2013**, 1, 128–152. [Google Scholar] - Rampey, A.M.; Umpleby Ii, R.J.; Rushton, G.T.; Iseman, J.C.; Shah, R.N.; Shimizu, K.D. Characterization of the imprint effect and the influence of imprinting conditions on affinity, capacity, and heterogeneity in molecularly imprinted polymers using the freundlich isotherm-affinity distribution analysis. Anal. Chem.
**2004**, 76, 1123–1133. [Google Scholar] [CrossRef] - Rushton, G.T.; Karns, C.L.; Shimizu, K.D. A critical examination of the use of the Freundlich isotherm in characterizing molecularly imprinted polymers (MIPs). Anal. Chim. Acta
**2005**, 528, 107–113. [Google Scholar] [CrossRef] - Umpleby Ii, R.J.; Baxter, S.C.; Bode, M.; Berch, J.K., Jr.; Shah, R.N.; Shimizu, K.D. Application of the Freundlich adsorption isotherm in the characterization of molecularly imprinted polymers. Anal. Chim. Acta
**2001**, 435, 35–42. [Google Scholar] [CrossRef] - Umpleby Ii, R.J.; Baxter, S.C.; Rampey, A.M.; Rushton, G.T.; Chen, Y.; Shimizu, K.D. Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers. J. Chromatogr. B
**2004**, 804, 141–149. [Google Scholar] [CrossRef] - Sips, R. On the structure of a catalyst surface. J. Chem. Phys.
**1948**, 16, 490–495. [Google Scholar] [CrossRef] - Sips, R. On the structure of a catalyst surface. II. J. Chem. Phys.
**1950**, 18, 1024–1026. [Google Scholar] [CrossRef] - Umpleby Ii, R.J.; Baxter, S.C.; Chen, Y.; Shah, R.N.; Shimizu, K.D. Characterization of molecularly imprinted polymers with the Langmuir-Freundlich isotherm. Anal. Chem.
**2001**, 73, 4584–4591. [Google Scholar] [CrossRef] - Miyabe, K.; Guiochon, G. Kinetic study of the concentration dependence of the mass transfer rate coefficient in enantiomeric separation on a polymeric imprinted stationary phase. Anal. Sci.
**2000**, 16, 719–730. [Google Scholar] [CrossRef] - Sajonz, P.; Kele, M.; Zhong, G.; Sellergren, B.; Guiochon, G. Study of the thermodynamics and mass transfer kinetics of two enantiomers on a polymeric imprinted stationary phase. J. Chromatogr. A
**1998**, 810, 1–17. [Google Scholar] [CrossRef] - Szabelski, P.; Kaczmarski, K.; Cavazzini, A.; Chen, Y.B.; Sellergren, B.; Guiochon, G. Energetic heterogeneity of the surface of a molecularly imprinted polymer studied by high-performance liquid chromatography. J. Chromatogr. A
**2002**, 964, 99–111. [Google Scholar] [CrossRef] - Quiñones, I.; Cavazzini, A.; Guiochon, G. Adsorption equilibria and overloaded band profiles of basic drugs in a reversed-phase system. J. Chromatogr. A
**2000**, 877, 1–11. [Google Scholar] [CrossRef] - Umpleby Ii, R.J.; Bode, M.; Shimizu, K.D. Measurement of the continuous distribution of binding sites in molecularly imprinted polymers. Analyst
**2000**, 125, 1261–1265. [Google Scholar] [CrossRef] - Andersson, L.I.; Müller, R.; Vlatakis, G.; Mosbach, K. Mimics of the binding sites of opioid receptors obtained by molecular imprinting of enkephalin and morphine. Proc. Natl. Acad. Sci. USA
**1995**, 92, 4788–4792. [Google Scholar] - Vlatakis, G.; Andersson, L.I.; Muller, R.; Mosbach, K. Drug assay using antibody mimics made by molecular imprinting. Nature
**1993**, 361, 645–647. [Google Scholar] [CrossRef] - Tsai, H.A.; Syu, M.J. Synthesis and characterization of creatinine imprinted poly(4-vinylpyridine-co-divinylbenzene) as a specific recognition receptor. Anal. Chim. Acta
**2005**, 539, 107–116. [Google Scholar] - Milojković, S.S.; Kostoski, D.; Čomor, J.J.; Nedeljković, J.M. Radiation induced synthesis of molecularly imprinted polymers. Polymer
**1997**, 38, 2853–2855. [Google Scholar] [CrossRef] - Hsu, H.C.; Chen, L.C.; Ho, K.C. Colorimetric detection of morphine in a molecularly imprinted polymer using an aqueous mixture of Fe
^{3+}and [Fe(CN)_{6}]^{3−}. Anal. Chim. Acta**2004**, 504, 141–147. [Google Scholar] [CrossRef] - Baggiani, C.; Giraudi, G.; Giovannoli, C.; Tozzi, C.; Anfossi, L. Adsorption isotherms of a molecular imprinted polymer prepared in the presence of a polymerisable template: Indirect evidence of the formation of template clusters in the binding site. Anal. Chim. Acta
**2004**, 504, 43–52. [Google Scholar] [CrossRef] - Hwang, C.C.; Lee, W.C. Chromatographic characteristics of cholesterol-imprinted polymers prepared by covalent and non-covalent imprinting methods. J. Chromatogr. A
**2002**, 962, 69–78. [Google Scholar] [CrossRef] - Lehmann, M.; Dettling, M.; Brunner, H.; Tovar, G.E.M. Affinity parameters of amino acid derivative binding to molecularly imprinted nanospheres consisting of poly[(ethylene glycol dimethacrylate)-co-(methacrylic acid)]. J. Chromatogr. B
**2004**, 808, 43–50. [Google Scholar] [CrossRef] - Katz, A.; Davis, M.E. Investigations into the mechanisms of molecular recognition with imprinted polymers. Macromolecules
**1999**, 32, 4113–4121. [Google Scholar] [CrossRef] - Scatchard, G. The attraction of proteins for small molecules and ions. Ann. N. Y. Acad. Sci.
**1949**, 51, 660–672. [Google Scholar] [CrossRef] - Kermode, J.C. The curvilinear scatchard plot. Experimental artifact or receptor heterogeneity? Biochem. Pharmacol.
**1989**, 38, 2053–2060. [Google Scholar] [CrossRef] - Spivak, D.; Gilmore, M.A.; Shea, K.J. Evaluation of binding and origins of specificity of 9-ethyladenine imprinted polymers. J. Am. Chem. Soc.
**1997**, 119, 4388–4393. [Google Scholar] [CrossRef] - Karapantsios, T.D.; Loukidou, M.X.; Matis, K.A. Sorption Kinetics; Wiley & Sons: New York, NY, USA, 2005. [Google Scholar]
- Ho, Y.S.; Ng, J.C.Y.; McKay, G. Kinetics of pollutant sorption by biosorbents: Review. Sep. Purif. Methods
**2000**, 29, 189–232. [Google Scholar] [CrossRef] - Smith, E.H. Uptake of heavy metals in batch systems by a recycled iron-bearing material. Water Res.
**1996**, 30, 2424–2434. [Google Scholar] - Loukidou, M.X.; Karapantsios, T.D.; Zouboulis, A.I.; Matis, K.A. Cadmium(II) biosorption by Aeromonas caviae: Kinetic modeling. Sep. Sci. Technol.
**2005**, 40, 1293–1311. [Google Scholar] [CrossRef] - Ritchie, A.G. Alternative to the Elovich equation for the kinetics of adsorption of gases on solids. J. Chem. Soc. Farad. Trans.
**1977**, 73, 1650–1653. [Google Scholar] [CrossRef] - Crank, J. The Mathematics of Diffusion; Oxford University Press: London, UK, 1975. [Google Scholar]
- Dzul Erosa, M.S.; Saucedo Medina, T.I.; Navarro Mendoza, R.; Avila Rodriguez, M.; Guibal, E. Cadmium sorption on chitosan sorbents: Kinetic and equilibrium studies. Hydrometallurgy
**2001**, 61, 157–167. [Google Scholar] [CrossRef] - Puranik, P.R.; Modak, J.M.; Paknikar, K.M. A comparative study of the mass transfer kinetics of metal biosorption by microbial biomass. Hydrometallurgy
**1999**, 52, 189–197. [Google Scholar] [CrossRef] - Loukidou, M.X.; Karapantsios, T.D.; Zouboulis, A.I.; Matis, K.A. Diffusion Kinetic Study of Chromium(VI) Biosorption by Aeromonas caviae. Ind. Eng. Chem. Res.
**2004**, 43, 1748–1755. [Google Scholar] - Bates, D.M.; Watts, D.G. Nonlinear Regression Analysis and Its Applications; Wiley & Sons: New York, NY, USA, 1988. [Google Scholar]
- Zouboulis, A.I.; Lazaridis, N.K.; Karapantsios, T.D.; Matis, K.A. Heavy metals removal from industrial wastewaters by biosorption. Int. J. Environ. Eng. Sci.
**2010**, 1, 57–78. [Google Scholar]

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Kyzas, G.Z.; Fu, J.; Matis, K.A.
New Biosorbent Materials: Selectivity and Bioengineering Insights. *Processes* **2014**, *2*, 419-440.
https://doi.org/10.3390/pr2020419

**AMA Style**

Kyzas GZ, Fu J, Matis KA.
New Biosorbent Materials: Selectivity and Bioengineering Insights. *Processes*. 2014; 2(2):419-440.
https://doi.org/10.3390/pr2020419

**Chicago/Turabian Style**

Kyzas, George Z., Jie Fu, and Kostas A. Matis.
2014. "New Biosorbent Materials: Selectivity and Bioengineering Insights" *Processes* 2, no. 2: 419-440.
https://doi.org/10.3390/pr2020419