Techno-Economic and FP2O Resilience Analysis of the Hydrogen Production Process from Palm Rachis in María La Baja, Bolívar
Abstract
1. Introduction
2. Materials and Methods
2.1. Process Description
2.2. Economic Analysis
3. Results and Discussion
3.1. Results of Techno-Economic Analysis
3.2. Results FP2O Resilience Analysis
3.2.1. Hydrogen Price Resilience
3.2.2. Product Price Resilience
3.2.3. Processing Capacity Resilience
3.2.4. Operating Cost Resilience
3.2.5. Possible Technological Risks
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González-Cárdenas, A. La agroindustria de la palma de aceite en América. Palmas 2016, 37, 215–228. [Google Scholar]
- Hasan, F. Estado actual de la agroindustria del aceite de palma en Indonesia. Palmas 2016, 37, 197–202. [Google Scholar]
- Conil, P. La valorización de los subproductos de la planta de tratamiento de los efluentes de la extractora de aceite de palma Palmar Santa Elena en Tumaco, Colombia. Palmas 2000, 21, 250–255. Available online: https://publicaciones.fedepalma.org/index.php/palmas/article/view/792 (accessed on 21 March 2025).
- Uregen Guler, N.; Yumurtaci, Z. Techno-economic evaluation of hydrogen production via biomass gasification: The role of carbon capture and storage in steam and oxygen gasification routes. Int. J. Hydrogen Energy 2025, 188, 152134. [Google Scholar] [CrossRef]
- Wang, J.; Yin, Y. Clostridium species for fermentative hydrogen production: An overview. Int. J. Hydrogen Energy 2021, 46, 34599–34625. [Google Scholar] [CrossRef]
- Saleh, Y.; Ali, L.; Altarawneh, M. Recent advances in biomass valorization through thermochemical processes, bio-oil production and AI strategies: A concise review. RSC Adv. 2025, 15, 45943–45978. [Google Scholar] [CrossRef]
- Dave, N.; Pathan, S.; Prabhu, A. Biological production of sustainable hydrogen using a renewable substrate: A systematic review. Int. J. Hydrogen Energy 2026, 201, 152809. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, M.; Kumar, V.; Thakur, I.S. Hydrogen production and carbon sequestration for biofuels and biomaterials. In Climate Change Mitigation: Sequestration of Greenhouse Gases; Biomass, Biofuels, Biochemicals Series; Elsevier: Amsterdam, The Netherlands, 2022; pp. 231–252. [Google Scholar] [CrossRef]
- Ratnakar, R.R.; Gupta, N.; Zhang, K.; van Doorne, C.; Fesmire, J.; Dindoruk, B.; Balakotaiah, V. Hydrogen supply chain and challenges in large-scale LH2 storage and transportation. Int. J. Hydrogen Energy 2021, 46, 24149–24168. [Google Scholar] [CrossRef]
- Linares Hurtado, J.I.; Moratilla Soria, B.Y. El hidrógeno y la energía: Análisis de situación y prospectiva de nuevas tecnologías energéticas. In Asociación Nacional de Ingenieros del ICAI; Universidad Pontificia Comillas: Madrid, España, 2007; ISBN 978-84-932772-9-1. [Google Scholar]
- Ozden, A. Pathways to feasible hydrogen production in alkaline water electrolyzers. Energy Nexus 2026, 21, 100620. [Google Scholar] [CrossRef]
- Griffiths, S.; Sovacool, B.K.; Kim, J.; Bazilian, M.; Uratani, J.M. Industrial decarbonization via hydrogen: A critical and systematic review of developments, socio-technical systems and policy options. Energy Res. Soc. Sci. 2021, 80, 102208. [Google Scholar] [CrossRef]
- Aristizábal Marulanda, V.; Botero Gutierrez, C.D.; Cardona Alzate, C.A. Thermochemical, Biological, Biochemical, and Hybrid Conversion Methods of Bio-derived Molecules into Renewable Fuels. In Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts: Technologies and Approaches for Scale-Up and Commercialization; Woodhead Publishing Series in Energy; Elsevier: Cambridge, UK, 2019; pp. 59–81. [Google Scholar] [CrossRef]
- Wang, Z. Energy and Air Pollution. In Comprehensive Energy Systems; Elsevier: Oxford, UK, 2018; Volume 1, pp. 909–949. [Google Scholar] [CrossRef]
- Baral, S.; Šebo, J. Techno-economic assessment of green hydrogen production integrated with hybrid and organic Rankine cycle (ORC) systems. Heliyon 2024, 10, e25742. [Google Scholar] [CrossRef]
- Pinheiro, F.P.; Gomes, D.M.; Tofoli, F.L.; Sampaio, R.F.; Melo, L.S.; Gregory, R.C.F.; Sgrò, D.; Leão, R.P.S. Techno-economic analysis of green hydrogen generation from combined wind and photovoltaic systems based on hourly temporal correlation. Int. J. Hydrogen Energy 2025, 97, 690–707. [Google Scholar] [CrossRef]
- Herdem, M.S.; Adams, T.A., II. Green hydrogen production systems with insights from green ammonia: A review and data-driven techno-economic and environmental meta-analysis. Energy Convers. Manag. 2026, 349, 120859. [Google Scholar] [CrossRef]
- Feng, Z.; Huang, Z.; Zhang, R.; Yu, S.; Feng, G.; Zhou, D.; Liu, G.; Liu, J.; Zhang, Y.; Zhu, J.; et al. Recent advances in cerium oxide redox cycle for solar thermochemical hydrogen production. Fuel 2026, 407, 137499. [Google Scholar] [CrossRef]
- Langè, S.; Pellegrini, L.A. Economic Analysis of a Combined Production of Hydrogen-Energy from Empty Fruit Bunches. Biomass Bioenergy 2013, 59, 520–531. [Google Scholar] [CrossRef]
- López Muñoz, F.; Meramo, S.; Ricardez-Sandoval, L.; Gonzalez, A.D.; Crissien Castillo, B.; Gonzalez Quiroga, A.; Baptiste, B.L.G.; León-Pulido, J. Insights from an exergy analysis of a green chemistry chitosan biorefinery. Chem. Eng. Res. Des. 2023, 194, 666–677. [Google Scholar] [CrossRef]
- Bae, J.; Lee, S.; Kim, S.; Oh, J.; Choi, S.; Bae, M.; Kang, I.; Katikaneni, S.P. Liquid fuel processing for hydrogen production: A review. Int. J. Hydrogen Energy 2016, 41, 19990–20022. [Google Scholar] [CrossRef]
- Zhu, Y.; Frey, H.C. Integrated gasification combined cycle (IGCC) power plant design and technology. In Advanced Power Plant Materials, Design and Technology; Woodhead Publishing Series in Energy; Woodhead Publishing: Cambridge, UK, 2010; pp. 54–88. [Google Scholar] [CrossRef]
- Herrera, T.; Parejo, V.; Gonzalez, A. Technoeconomic Sensibility Analysis of Industrial Agar Production from Red Algae. Chem. Eng. Trans. 2018, 70, 2029–2034. [Google Scholar] [CrossRef]
- Romero, J.; Vergara, L.; Peralta, Y.; González, A. A Techno-Economic Sensitivity Approach for Development of Palm-Based Biorefineries in Colombia. Chem. Eng. Trans. 2017, 57, 13–18. [Google Scholar] [CrossRef]
- El-Halwagi, M. Sustainable Design Through Process Integration: Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Herrera-Rodríguez, T.C.; Ramos-Olmos, M.; González-Delgado, Á.D. A joint economic evaluation and FP2O techno-economic resilience approach for evaluation of suspension PVC production. Results Eng. 2024, 24, 103069. [Google Scholar] [CrossRef]
- Alibaba. Pure Hydrogen—Gases CAS 1601346006195. 2025. Available online: https://www.alibaba.com/product-detail/China-Makes-Special-Specialty-Gases-CAS_1601346006195.html (accessed on 20 November 2025).
- World Bank. Interest Rate (%). 2025. Available online: https://data.worldbank.org/indicator/FR.INR.RINR (accessed on 6 November 2025).
- Actualícese. General Income Tax Rate 2025 for Legal Entities. 2024. Available online: https://actualicese.com/tarifa-general-del-impuesto-de-renta-2025-para-personas-juridicas/ (accessed on 20 November 2025).
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Techno-economic evaluation and sensitivity analysis of a conceptual design for supercritical water gasification of soybean straw to produce hydrogen. Bioresour. Technol. 2021, 331, 125005. [Google Scholar] [CrossRef]
- Rosha, P.; Ali, F.M.; Yusuf, M.; Ibrahim, H. Evaluation of the economic and technological aspects of producing blue hydrogen via ethanol-steam reforming with carbon capture. Sustain. Chem. Clim. Action 2025, 7, 100155. [Google Scholar] [CrossRef]
- Yang, M.; Liu, C. The calculation of fluorine plastic economizer in economy by using the equivalent heat drop. Energy 2017, 135, 674–684. [Google Scholar] [CrossRef]
- Toker, T. The operating profit flow method as a profitability analysis tool for hospitality enterprises. Int. J. Hosp. Manag. 2025, 125, 103997. [Google Scholar] [CrossRef]
- Alibaba. Hydrogen Price Per Ton—Specifications, Grades, and How They Are Applied in Industry. Available online: https://www.alibaba.com/product-insights/hydrogen-price-per-ton.html?utm (accessed on 5 September 2025).
- IRENA Green Hydrogen Cost Reduction. Scaling Up Electrolysers to Meet the 1.5 °C Climate Goal; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020; ISBN 978-92-9260-295-6. [Google Scholar]
- Basu, P. Biomass Gasification and Pyrolysis: Practical Design and Theory; Elsevier: Oxford, UK, 2010. [Google Scholar]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Han, J.; Kim, H. The reduction and control technology of tar during biomass gasification/pyrolysis: An overview. Renew. Sustain. Energy Rev. 2008, 12, 397–416. [Google Scholar] [CrossRef]
- Milne, T.A.; Evans, R.J.; Abatzoglou, N. Biomass Gasifier “Tars”: Their Nature, Formation, and Conversion; NREL: Golden, CO, USA, 1998.
- Sokhansanj, S.; Kumar, A.; Turhollow, A.F. Development and implementation of integrated biomass supply analysis and logistics model (IBSAL). Biomass Bioenergy 2006, 30, 838–847. [Google Scholar] [CrossRef]
- Khojasteh Salkuyeh, Y.; Saville, B.A.; MacLean, H.L. Techno-economic analysis and life cycle assessment of hydrogen production from different biomass gasification processes. Int. J. Hydrogen Energy 2018, 43, 9514–9528. [Google Scholar] [CrossRef]
- Abawalo, M.; Pikoń, K.; Landrat, M. Comparative Life Cycle Assessment of Hydrogen Production via Biogas Reforming and Agricultural Residue Gasification. Appl. Sci. 2025, 15, 5029. [Google Scholar] [CrossRef]










| Stream | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|---|
| T (°C) | 30.00 | 75.00 | 75.00 | 75.00 | 259.93 | 40.00 | 39.39 | 39.39 | 39.39 | 39.39 |
| P (bar) | 1.00 | 1.00 | 1.00 | 1.00 | 50.00 | 50.00 | 45.00 | 45.00 | 45.00 | 45.00 |
| Mass flow (t/h) | 22.88 | 27.84 | 5.93 | 5.93 | 57.14 | 57.14 | 0.46 | 56.67 | 4.54 | 52.13 |
| Stream | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| T (°C) | 174.93 | 110.00 | 336.84 | 336.84 | 336.84 | 1193.38 | 215.36 | 100.00 | 98.07 | 98.07 |
| P (bar) | 1.00 | 50.00 | 1.00 | 1.00 | 1.00 | 60.00 | 60.00 | 60.00 | 50 | 50.00 |
| Mass flow (t/h) | 5.93 | 1.52 | 7.45 | 2.95 | 4.50 | 4.50 | 4.50 | 4.50 | 21.68 | 6.53 |
| Stream | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| T (°C) | 98.07 | 10.00 | 98.90 | 66.09 | 200 | 100.00 | 276.85 | 75.00 | 30.00 | 272.93 |
| P (bar) | 50.00 | 1.00 | 1.00 | 50.00 | 50 | 50.00 | 50.00 | 1.00 | 1.00 | 50.00 |
| Mass flow (t/h) | 15.15 | 0.01 | 10.89 | 46.25 | 46.25 | 10.89 | 57.14 | 10.89 | 10.89 | 57.14 |
| Assumptions (2025) | ||||
|---|---|---|---|---|
| Processing capacity (t/y) | Main product flow rate (t/y) | Raw material cost (USD/t) | Raw material cost (USD/t) | Contingency percentage (%) |
| 183,072 | 36,339 | 3100 | 50 | 36 |
| Assumptions (2025) | ||||
| Tax Rate (%) | Discount rate (%) | Plant service life (years) | Operator hourly cost (USD/h) | Plant construction time (years) |
| 35 | 10 | 15 | 30 | 2 |
| Item | (USD 2025) |
|---|---|
| Purchased Equipment Cost | 1,987,400.00 |
| Purchased Equipment Installation | 775,086.00 |
| Instrumentation and Controls (installed) | 258,362.00 |
| Piping (installed) | 616,094.00 |
| Electrical Systems (installed) | 198,740.00 |
| Service Facilities | 1,093,070.00 |
| Total DFCI | 4,928,752.00 |
| Yard Improvements | 258,362.00 |
| Engineering and Supervision | 635,968.00 |
| Equipment (R + D) | 198.740 |
| Construction Expenses | 675,716.00 |
| Legal Expenses | 19,874.00 |
| Contractor’s Fee | 345,012.64 |
| Contingency | 715,464.00 |
| Total IFCI | 2,849,136.64 |
| Fixed Capital Investment (FCI) | 7,777,888.64 |
| Working Capital Investment (WCI) | 1,555,577.73 |
| Start-Up Costs (SUCs) | 777,788.86 |
| Total Capital Investment (TCI) | 10,111,255.23 |
| Item | (USD 2025) |
|---|---|
| Raw materials | 9,153,600.00 |
| Industrial services (Utilities) | 88,334,782.44 |
| Total VAOC | 97,488,382.44 |
| Local taxes | 233,336.66 |
| Insurance | 77,778.89 |
| Interest/Rent | 101,112.55 |
| Total FCH | 412,228.10 |
| Maintenance and repairs | 388,894.43 |
| Operating supplies | 58,334.16 |
| Operating labor | 1,935,733.33 |
| Direct supervision and clerical labor | 290,360.00 |
| Laboratory charges | 193,573.33 |
| Patents and royalties | 77,778.89 |
| Total DPC | 2,944,674.15 |
| Overhead (POH) | 1,161,440.00 |
| General expenses (GE) | 1,026,528.54 |
| Annualized Operating Costs (AOCs) | 103,033,253.22 |
| Industrial Services | Process Consumption | Cost (USD/t-RM) |
|---|---|---|
| Water | 2.11 m3/t-RM | 2.11 |
| Electricity | 1152.63 kWh/t-RM | 472.58 |
| Steam | 541.92 kg/t-RM | 7.35 |
| Compressed air | 10,886.22 kg/h | 0.48 |
| Total | - | 482.51 |
| Economic Indicators | Value |
|---|---|
| Cumulative Cash Flow or CCF (1/year) | 0.95 |
| Discounted Payback Period or DPBP (years) | 4.54 |
| %ROI | 58.83% |
| NPV (millions of USD) | 25.01 |
| Internal Rate of Return or IRR | 38.13% |
| Benefit/cost Ratio | 3.29 |
| Profitability Indicators | Value (USD) |
| Gross Profit or GP | 9,618,514.78 |
| Gross Profit with Depreciation or DGP | 9,151,841.46 |
| Profit After Taxes or PAT | 5,948,696.95 |
| EBITDA | 10,085,188.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Herrera-Rodríguez, T.C.; Acevedo Pabón, P.A.; González-Delgado, Á.D. Techno-Economic and FP2O Resilience Analysis of the Hydrogen Production Process from Palm Rachis in María La Baja, Bolívar. Processes 2026, 14, 489. https://doi.org/10.3390/pr14030489
Herrera-Rodríguez TC, Acevedo Pabón PA, González-Delgado ÁD. Techno-Economic and FP2O Resilience Analysis of the Hydrogen Production Process from Palm Rachis in María La Baja, Bolívar. Processes. 2026; 14(3):489. https://doi.org/10.3390/pr14030489
Chicago/Turabian StyleHerrera-Rodríguez, Tamy Carolina, Paola Andrea Acevedo Pabón, and Ángel Darío González-Delgado. 2026. "Techno-Economic and FP2O Resilience Analysis of the Hydrogen Production Process from Palm Rachis in María La Baja, Bolívar" Processes 14, no. 3: 489. https://doi.org/10.3390/pr14030489
APA StyleHerrera-Rodríguez, T. C., Acevedo Pabón, P. A., & González-Delgado, Á. D. (2026). Techno-Economic and FP2O Resilience Analysis of the Hydrogen Production Process from Palm Rachis in María La Baja, Bolívar. Processes, 14(3), 489. https://doi.org/10.3390/pr14030489

