Optimization of Different Methods for the Extraction of Mulberry Leaves and the Effects on Caco-2 Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction Methods
2.2.1. Conventional Extraction Method
2.2.2. Ultrasonic-Assisted Extraction Method
2.2.3. Microwave-Assisted Extraction Method
2.3. Experimental Design
2.4. Determination of Total Phenolic Compounds
2.5. Cytotoxicity Test
2.6. Statistical Analysis
3. Results and Discussion
3.1. Model Fitting and Experimental Design
3.2. Optimization of Extraction Parameters
3.3. Validation of the Model Equation
3.4. Analysis of the Response Surface
3.5. Cytotoxic Activity of Ultrasonic-Assisted Extract of Mulberry Leaves on Caco-2 Cells
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, M.-Z.; Cui, Q.; Wang, L.T.; Meng, Y.; Yu, L.; Li, Y.Y.; Fu, Y.J. A green and integrated strategy for enhanced phenolic compounds extraction from mulberry (Morus alba L.) leaves by deep eutectic solvent. Microchem. J. 2020, 154, 104598. [Google Scholar] [CrossRef]
- Saini, P.; Rohela, G.K.; Kumar, J.S.; Shabnam, A.A.; Kumar, A. Cultivation, Utilization, and Economic Benefits of Mulberry. In The Mulberry Genome; Gnanesh, B.N., Vijayan, K., Eds.; Springer: Cham, Switzerland, 2023; Chapter 2; pp. 13–56. [Google Scholar]
- Jadhav, Y.T.; Babu, B.K.K.; Chavan, A.D.; Tambave, K.N. Mulberry and its waste utilization an important socio-economic status in sericulture. Int. J Plant Prot. 2020, 13, 125–130. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, C.; Dai, F.; Xiao, G.; Luo, G. HPLC determination of phenolic compounds in different solvent extracts of mulberry leaves and antioxidant capacity of extracts. Int. J. Food Prop. 2021, 24, 544–552. [Google Scholar] [CrossRef]
- Momeni, H.; Salehi, A.; Absalan, A.; Akbari, M. Hydro-alcoholic extract of Morus nigra reduces fasting blood glucose and HbA1c% in diabetic patients, probably via competitive and allosteric interaction with alpha-glucosidase enzyme; a clinical trial and in silico analysis. J. Complement. Integr. Med. 2022, 19, 763–769. [Google Scholar] [CrossRef]
- Singh, S.V.; Manhas, A.; Singh, S.P.; Mishra, S.; Tiwari, N.; Kumar, P.; Shanker, K.; Srivastava, K.; Sashidhara, K.V.; Pal, A. A phenolic glycoside from Flacourtia indica induces heme mediated oxidative stress in Plasmodium falciparum and attenuates malaria pathogenesis in mice. Phytomedicine 2017, 30, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, X.; Zhu, X.; Wang, G.; Zhuang, K.; Wang, Y.; Ding, W. Optimization of extrusion and ultrasonic-assisted extraction of phenolic compounds from Jizi439 black wheat bran. Processes 2020, 8, 1153. [Google Scholar] [CrossRef]
- Vo, T.P.; Ha, N.M.H.; Ho, T.A.T.; Nguyen, D.Q. Optimizing the microwave-assisted extraction and ultrasonic-assisted processes to acquire flavonoid and phenolic compounds from watermelon rinds using natural deep eutectic solvents. Chem. Eng. Commun. 2024, 212, 260–275. [Google Scholar] [CrossRef]
- Rodsamran, P.; Sothornvit, R. Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Biosci. 2019, 28, 66–73. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, S.; Ali, A.; Gupta, A.C.; Shanker, K.; Bawankule, D.U.; Luqman, S. Microwave-assisted Single Step Cinnamic Acid Derivatization and Evaluation for Cytotoxic Potential. Curr. Pharm. Biotechnol. 2020, 21, 236–243. [Google Scholar] [CrossRef]
- Bansod, S.P.; Parikh, J.K.; Sarangi, P.K. Pineapple peel waste valorization for extraction of bio-active compounds and protein: Microwave assisted method and Box Behnken design optimization. Environ. Res. 2023, 221, 115237. [Google Scholar] [CrossRef]
- Hooshmand, S.; Mahdinezhad, M.R.; Taraz Jamshidi, S.; Soukhtanloo, M.; Mirzavi, F.; Iranshahi, M.; Hasanpour, M.; Ghorbani, A. Morus nigra L. extract prolongs survival of rats with hepatocellular carcinoma. Phytother. Res. 2021, 35, 3365–3376. [Google Scholar] [CrossRef] [PubMed]
- Erden, Y. Sour black mulberry (Morus nigra L.) causes cell death by decreasing mutant p53 expression in HT-29 human coloncancer cells. Food Biosci. 2021, 42, 101113. [Google Scholar] [CrossRef]
- Qadir, M.I.; Ali, M.; Ibrahim, Z. Anti-cancer activity of Morus nigra leaves extract. Bangladesh J. Pharmacol. 2014, 9, 496–497. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Nowak, A. Cytotoxic and DNA-damaging effects of Aronia melanocarpa, Cornus mas, and Chaenomeles superba leaf extracts on the human colon adenocarcinoma cell line Caco-2. Antioxidants 2020, 9, 1030. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Lin, S.J.; Zhang, J.J.; Zhao, C.N.; Li, H.B. Microwave-assisted extraction of natural antioxidants from the exotic Gordonia axillaris fruit: Optimization and identification of phenolic compounds. Molecules 2017, 22, 1481. [Google Scholar] [CrossRef]
- Martin-Garcia, B.; Aznar-Ramos, M.; Verardo, V.; Gómez-Caravaca, A. The establishment of ultrasonic-assisted extraction forthe recovery of phenolic compounds and evaluation of their antioxidant activity from Morus alba leaves. Foods 2022, 11, 314. [Google Scholar] [CrossRef]
- Xu, K.; Wang, Y.; Huang, Y.; Li, N.; Wen, Q. A green deep eutectic solvent-based aqueous two-phase system for protein extracting Analytica Chimica Acta A greendeep eutectic solvent-based aqueous two-phase system for protein extracting. Anal. Chim. Acta 2018, 864, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Gundogdu, M.; Canan, I.; Gecer, M.K.; Kan, T.; Ercisli, S. Phenolic Compounds, Bioactive Content and Antioxidant Capacity of the Fruits of Mulberry (Morus spp.) Germplasm in Turkey. Folia Hortic. 2017, 29, 251–262. [Google Scholar] [CrossRef]
- Hyun, E.J.; Vu Thi, P.; Cai, L.; Yan, Z.; Li, H.; Yang, S.; Kim, Y.; Kim, S.; Cho, H.; Bao, H.; et al. Development of HPLC Method for Differentiation of Three Parts of Mulberry Tree. Anal. Sci. Technol. 2017, 30, 130–137. [Google Scholar]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization (ISO): Geneva, Switzerland, 2009.
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Iwamoto, S.; Borompichaichartkul, C.; Duangmal, K.; Yamauchi, R. Microencapsulation of bioactive compounds from mulberry (Morus alba L.) leaf extracts by protein–polysaccharide interactions. Int. J. Food Sci. Technol. 2016, 51, 649–655. [Google Scholar] [CrossRef]
- Kostić, E.; Arsić, B.; MitiĆ, M.; DimitrijeviĆ, D.; Marinkovic, E.P. Optimization of the solid-liquid extraction process of phenolic compounds from mulberry fruit. Not. bot Horti Agrobot. Cluj-Napoca 2019, 47, 629–633. [Google Scholar] [CrossRef]
- Wu, D.; Ren, X.; Lin, M.; Xu, X.; An, H. Optimization of extraction technique of flavonoids from Morus alba L. by response surface methodology. Food Res. Dev. 2012, 2, 47–51. (In Chinese) [Google Scholar]
- Insang, S.; Kijpatanasilp, I.; Jafari, S.; Assatarakul, K. Ultrasonic-assisted extraction of functional compound from mulberry (Morus alba L.) leaf using response surface methodology and effect of microencapsulation by spray drying on quality of optimized extract. Ultrason. Sonochem 2022, 82, 105806. [Google Scholar] [CrossRef]
- Da Porto, C.; Porretto, E.; Decorti, D. Comparison of ultrasonic-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason. Sonochem 2013, 20, 1076–1080. [Google Scholar] [CrossRef]
- Wu, L.; Li, L.; Chen, S.; Wang, L.; Lin, X. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Sep. Purif. Technol. 2020, 247, 117014. [Google Scholar] [CrossRef]
- Jovanovic, A.A.; Dordevic, V.B.; Zdunic, G.M.; Pljevljakusic, D.S.; Savikin, K.P.; Godevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasonic-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef]
- Živković, J.; Šavikin, K.; Janković, T.; Ćujić, N.; Menković, N. Optimization of ultrasonic-assisted extraction of polyphenolic compounds from pomegranate peel using response surface methodology. Sep. Purif. Technol. 2018, 194, 40–47. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Optimization of ultrasonic-assisted extraction conditions for recovery of phenolic compounds and antioxidant capacity from banana (Musa cavendish) peel. J. Food Process Preserv. 2017, 41, e13148. [Google Scholar] [CrossRef]
- Kazemi, M.; Karim, R.; Mirhosseini, H.; Hamid, A.A. Optimization of pulsed ultrasonic-assisted technique for extraction of phenolics from pomegranate peel of Malas variety: Punicalagin and hydroxybenzoic acids. Food Chem. 2016, 206, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Ghafoor, K.; Choi, Y.H.; Jeon, J.Y.; Jo, I.H. Optimization of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J. Agric. Food Chem. 2009, 57, 4988–4994. [Google Scholar] [CrossRef]
- Ghafoor, K.; Choi, Y.H. Optimization of ultrasound assisted extraction of phenolic compoundsand antioxidants from grape peel through response surface methodology. J. Korean Soc. Appl. Biol. Chem. 2009, 52, 295–300. [Google Scholar] [CrossRef]
- Radojković, M.; Moreira, M.M.; Soares, C.; Barroso, M.F.; Cvetanović, A.; Švarc-Gajić, J.; Morais, S.; Delerue-Matos, C. Microwave-assisted extraction of phenolic compounds from Morus nigra leaves: Optimization and characterization of the antioxidant activity and phenolic composition. J. Chem. Technol. Biotechnol. 2018, 93, 1684–1693. [Google Scholar] [CrossRef]
- Stanisavljevic, I.; Stojicevic, S.; Velickovic, D.; Veljkovic, V.; Lazic, M. Antioxidant and antimicrobial activities of echinacea (Echinacea purpurea L.) extracts obtained by classical and ultrasound extraction. Chin. J. Chem. Eng. 2009, 17, 478–483. [Google Scholar] [CrossRef]
- Abbas, Z.; Tong, Y.; Wang, J.; Zhang, J.; Wei, X.; Si, D.; Zhang, R. Potential role and mechanism of mulberry extract in immune modulation: Focus on chemical compositions, mechanistic insights, and extraction techniques. Int. J. Mol. Sci. 2024, 25, 5333. [Google Scholar] [CrossRef] [PubMed]
- Both, S.; Chemat, F.; Strube, J. Extraction of polyphenols from black tea—Conventional and ultrasound assisted extraction. Ultrason. Sonochem 2014, 21, 1030–1034. [Google Scholar] [CrossRef]
- Deepa, M.; Sureshkumar, T.; Satheeshkumar, P.K.; Priya, S. Antioxidant rich Morus alba leaf extract induces apoptosis in human colon and breast cancer cells by the down-regulation of nitric oxide produced by inducible nitric oxide synthase. Nutr. Cancer 2013, 65, 305–310. [Google Scholar] [CrossRef]
- Cui, H.; Lu, T.; Wang, M.; Zou, X.; Zhang, Y.; Yang, X.; Dong, Y.; Zhou, H. Flavonoids from Morus alba L. leaves: Optimization of extraction by response surface methodology and comprehensive evaluation of their antioxidant, antimicrobial, and inhibition of α-amylase activities through analytical hierarchy process. Molecules 2019, 24, 2398. [Google Scholar] [CrossRef]
- Yang, M.Y.; Wu, C.H.; Hung, T.W.; Wang, C.J. Endoplasmic reticulum stress-induced resistance to doxorubicin is reversed by mulberry leaf polyphenol extract in hepatocellular carcinoma through inhibition of COX-2. Antioxidants 2020, 9, 26. [Google Scholar] [CrossRef]
- Zaklos-Szyda, M.; Pawlik, N.; Polka, D.; Nowak, A.; Koziołkiewicz, M.; Podsedek, A. Viburnum opulus fruit phenolic compounds as cytoprotective agents able to decrease free fatty acids and glucose uptake by Caco-2 cells. Antioxidants 2019, 8, 262. [Google Scholar] [CrossRef]



| Extraction Method | Independent Variable | Unit | Factor Level | ||
|---|---|---|---|---|---|
| −1 | 0 | +1 | |||
| Conventional | Temperature (A) | °C | 30 | 45 | 60 |
| Time (B) | min | 60 | 210 | 360 | |
| Solvent concentration (C) | % | 0 | 50 | 100 | |
| Ultrasonic-assisted | Temperature (A) | °C | 30 | 45 | 60 |
| Time (B) | min | 15 | 30 | 45 | |
| Solvent concentration (C) | % | 0 | 50 | 100 | |
| Microwave-assisted | Power (D) | W | 300 | 500 | 700 |
| Time (B) | min | 2 | 6 | 10 | |
| Solvent concentration (C) | % | 0 | 50 | 100 | |
| Extraction Method | Run | Temperature/Power | Extraction Time (min) | Solvent Concentration (%) | Total Phenolic Compounds (mg/kg Dry Leaf) |
|---|---|---|---|---|---|
| Conventional Extraction | 1 | 60 °C | 60 | 50 | 888.11 |
| 2 | 45 °C | 210 | 50 | 917.73 | |
| 3 | 45 °C | 210 | 50 | 700.81 | |
| 4 | 45 °C | 210 | 50 | 741.81 | |
| 5 | 30 °C | 360 | 50 | 749.75 | |
| 6 | 30 °C | 210 | 100 | 164.53 | |
| 7 | 60 °C | 210 | 0 | 10.96 | |
| 8 | 60 °C | 210 | 100 | 496.34 | |
| 9 | 45 °C | 60 | 0 | 49.79 | |
| 10 | 45 °C | 210 | 50 | 917.73 | |
| 11 | 30 °C | 210 | 0 | 9.46 | |
| 12 | 30 °C | 60 | 50 | 926.15 | |
| 13 | 45 °C | 60 | 100 | 166.4 | |
| 14 | 45 °C | 210 | 50 | 692.87 | |
| 15 | 45 °C | 360 | 0 | 10.2 | |
| 16 | 45 °C | 360 | 100 | 435.59 | |
| 17 | 60 °C | 360 | 50 | 512.41 | |
| Ultrasonic-assisted | 1 | 45 °C | 15 | 100 | 58.68 |
| 2 | 60 °C | 30 | 0 | ND | |
| 3 | 30 °C | 45 | 50 | 52.82 | |
| 4 | 60 °C | 15 | 50 | 374.94 | |
| 5 | 45 °C | 45 | 0 | ND | |
| 6 | 60 °C | 30 | 100 | 354.5 | |
| 7 | 45 °C | 30 | 50 | 345.59 | |
| 8 | 30 °C | 30 | 0 | ND | |
| 9 | 45 °C | 30 | 50 | 443.06 | |
| 10 | 45 °C | 30 | 50 | 546.15 | |
| 11 | 45 °C | 15 | 0 | ND | |
| 12 | 60 °C | 45 | 50 | 939.72 | |
| 13 | 45 °C | 30 | 50 | 342.18 | |
| 14 | 30 °C | 15 | 50 | ND | |
| 15 | 45 °C | 45 | 100 | 309.79 | |
| 16 | 45 °C | 30 | 50 | 344.44 | |
| 17 | 30 °C | 30 | 100 | 75.84 | |
| Microwave-assisted | 1 | 500 W | 6 | 50 | 352.77 |
| 2 | 500 W | 10 | 0 | ND | |
| 3 | 300 W | 6 | 0 | 5.19 | |
| 4 | 700 W | 6 | 100 | 36.49 | |
| 5 | 700 W | 2 | 50 | 224.90 | |
| 6 | 700 W | 10 | 50 | 153.10 | |
| 7 | 700 W | 6 | 0 | ND | |
| 8 | 500 W | 2 | 100 | 30.07 | |
| 9 | 500 W | 6 | 50 | 180.58 | |
| 10 | 500 W | 10 | 100 | 40.05 | |
| 11 | 300 W | 6 | 100 | 40.69 | |
| 12 | 300 W | 10 | 50 | 245.24 | |
| 13 | 500 W | 2 | 0 | 26.32 | |
| 14 | 500 W | 6 | 50 | 188.87 | |
| 15 | 300 W | 2 | 50 | 254.64 | |
| 16 | 500 W | 6 | 50 | 201.90 | |
| 17 | 500 W | 6 | 50 | 275.56 |
| Extraction Method | Source | Sum of Squares | Degrees of Freedom | Mean Squares | F Value | p-Value |
|---|---|---|---|---|---|---|
| Conventional Extraction | Model | 1.853 × 106 | 9 | 2.059 × 105 | 8.18 | 0.0056 * |
| A (Temperature) | 419.49 | 1 | 419.49 | 0.0167 | 0.9009 | |
| B (Extraction time) | 13,000.78 | 1 | 13,000.78 | 0.5166 | 0.4956 | |
| C (Solvent concentration) | 1.748 × 105 | 1 | 1.748 × 105 | 6.94 | 0.0337 | |
| AB | 9930.12 | 1 | 9930.12 | 0.3946 | 0.5498 | |
| AC | 27,276.17 | 1 | 27,276.17 | 1.08 | 0.3325 | |
| BC | 23,836.27 | 1 | 23,836.27 | 0.9472 | 0.3629 | |
| A2 | 431.96 | 1 | 431.96 | 0.0172 | 0.8994 | |
| B2 | 941.85 | 1 | 941.85 | 0.0374 | 0.8521 | |
| C2 | 1.586 × 106 | 1 | 1.586 × 106 | 63.02 | <0.0001 | |
| Residual | 1.762 × 105 | 7 | 25,165.69 | |||
| Lack-of-fit | 1.239 × 105 | 3 | 41,302.12 | 3.16 | 0.1476 ** | |
| Pure error | 52,253.49 | 4 | 13,063.37 | |||
| Cor total | 2.029 × 106 | 16 | ||||
| R2 | 0.9132 | |||||
| R2-adj | 0.8016 | |||||
| C.V.% | 32.14 | |||||
| PRESS | 2.064 × 106 | |||||
| Adeq Precision | 7.9421 | |||||
| Ultrasonic-assisted | Model | 9.048 × 105 | 9 | 1.005 × 105 | 4.12 | 0.0375 * |
| A (Temperature) | 2.966 × 105 | 1 | 2.966 × 105 | 12.17 | 0.0101 | |
| B (Extraction time) | 94,332.13 | 1 | 94,332.13 | 3.87 | 0.0898 | |
| C (Solvent concentration) | 79,762.18 | 1 | 79,762.18 | 3.27 | 0.1134 | |
| AB | 65,525.76 | 1 | 65,525.76 | 2.69 | 0.1451 | |
| AC | 19,412.85 | 1 | 19,412.85 | 0.7965 | 0.4018 | |
| BC | 15,764.06 | 1 | 15,764.06 | 0.6468 | 0.4477 | |
| A2 | 2319.97 | 1 | 2319.97 | 0.0952 | 0.7667 | |
| B2 | 6384.77 | 1 | 6384.77 | 0.2620 | 0.6245 | |
| C2 | 3.143 × 105 | 1 | 3.143 × 105 | 12.90 | 0.0088 | |
| Residual | 1.706 × 105 | 7 | 24,372.99 | |||
| Lack-of-fit | 1.381 × 105 | 3 | 46,032.74 | 5.66 | 0.0636 ** | |
| Pure error | 32,512.74 | 4 | 8128.18 | |||
| Cor total | 1.075 × 106 | 16 | ||||
| R2 | 0.8414 | |||||
| R2-adj | 0.6374 | |||||
| C.V.% | 63.38 | |||||
| PRESS | 2.260 × 106 | |||||
| Adeq Precision | 7.4010 | |||||
| Microwave-assisted | Model | 2.956 × 105 | 9 | 32,843.09 | 54.99 | <0.0001 * |
| D (Power) | 2153.98 | 1 | 2153.98 | 3.61 | 0.0993 | |
| B (Extraction time) | 1189.26 | 1 | 1189.26 | 1.99 | 0.2011 | |
| C (Solvent concentration) | 1676.49 | 1 | 1676.49 | 2.81 | 0.1378 | |
| DB | 973.13 | 1 | 973.13 | 1.63 | 0.2425 | |
| DC | 0.2401 | 1 | 0.2401 | 0.0004 | 0.9846 | |
| BC | 329.24 | 1 | 329.24 | 0.5512 | 0.4820 | |
| D2 | 10,832.72 | 1 | 10,832.72 | 18.14 | 0.0038 | |
| B2 | 9382.37 | 1 | 9382.37 | 15.71 | 0.0054 | |
| C2 | 2.550 × 105 | 1 | 2.550 × 105 | 426.88 | <0.0001 | |
| Residual | 4180.92 | 7 | 597.27 | |||
| Lack-of-fit | 2207.82 | 3 | 735.94 | 1.49 | 0.3446 ** | |
| Pure error | 1973.10 | 4 | 493.27 | |||
| Cor total | 2.998 × 105 | 16 | ||||
| R2 | 0.9861 | |||||
| R2-adj | 0.9681 | |||||
| C.V.% | 15.72 | |||||
| PRESS | 38,408.14 | |||||
| Adeq Precision | 17.5535 |
| Extraction Method | Predicted Values (mg/kg) | Average of Experiments (mg/kg) | p-Value of t-Test |
|---|---|---|---|
| Conventional Extraction | 876.042 | 877.614 | 0.116 |
| Ultrasonic-assisted Extraction | 820.384 | 821.724 | 0.193 |
| Microwave-assisted Extraction | 319.410 | 320.454 | 0.151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fenderya, S.; Yazıcı Kaya, Z.I.; Akdeniz, V.; Fırat, E.; Dinkçi, N. Optimization of Different Methods for the Extraction of Mulberry Leaves and the Effects on Caco-2 Cells. Processes 2026, 14, 31. https://doi.org/10.3390/pr14010031
Fenderya S, Yazıcı Kaya ZI, Akdeniz V, Fırat E, Dinkçi N. Optimization of Different Methods for the Extraction of Mulberry Leaves and the Effects on Caco-2 Cells. Processes. 2026; 14(1):31. https://doi.org/10.3390/pr14010031
Chicago/Turabian StyleFenderya, Serap, Z. Işın Yazıcı Kaya, Vildan Akdeniz, Esra Fırat, and Nayil Dinkçi. 2026. "Optimization of Different Methods for the Extraction of Mulberry Leaves and the Effects on Caco-2 Cells" Processes 14, no. 1: 31. https://doi.org/10.3390/pr14010031
APA StyleFenderya, S., Yazıcı Kaya, Z. I., Akdeniz, V., Fırat, E., & Dinkçi, N. (2026). Optimization of Different Methods for the Extraction of Mulberry Leaves and the Effects on Caco-2 Cells. Processes, 14(1), 31. https://doi.org/10.3390/pr14010031

